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Experimental Structure Determination

High resolution structure determination
o X-ray Crystallography — requires crystals
® NMR spectroscopy — small RNAs only
® Cryo-EM — best for large RNA-protein complexes
e FRET - distance between just two fluorescent probes

Cheap alternative:
Structure probing:

® RNA is chemically modified in a structure dependent manner

® Readout via sequencing modified RNA



In-line probing

Chain breaks happen spontaneously at room temperature

Break points mostly in unpaired regions

— structure dependent cleavage

Can be accelerated by adding lead
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SHAPE Probing

Selective 2'-hydroxyl acylation analyzed by primer extension
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® Probes flexibility rather than base pairing

paired nucleotides — C3’-endo sugar pucker — low reactivity
® Little sequence bias
® Several different reagents available (1IM7, NMIA, NAI)

Deigan, Li, Mathews, Weeks 2009



DMS (Dimethyl Sulfate) Probing

0.0

A Dimethyl sulfate = HsC.o-S.5-CHa

Cytosine Adenosine

NH, NH, NH, NH;

DMS +_CHs +_CH

SN SNg N NN DMS N SN
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Ribose Ribose Ribose Ribose

® Modification on the WC edge
® Directly probes base pairing
® Mostly probes A and C, no data for G and U



Enzymatic Methods

Use enzymes that cleave only single strand / double stranded
regions
often a pair of single strand / double strand specific enzymes

Typically probes only specific nucleotides

Only sites accessible to a bulky protein
Not usable in vivo (in contrast to SHAPE and DMS)

Not as widely used anymore



How to measure Reactivity

® Qld-school: Gel-electrophoresis

® Modern: Readout via sequencing
® SHAPE-Seq: Modification causes RT-stop
® SHAPE-MaP: Modification causes mis-incorporation
(mutation)

Perform experiment with and without reagent
measure mutation (or RT-stop) frequency m; at pos i

m[@reated _ m}mt reated
mlglenatured

reactivity: ri =

MaP (mutational profiling) allows multiple mutations in a single
read!



Incompleteness

. nn I CCCCC DN DN -9.30
e CCCCC .0 CCCa0000) ... NN -8.50
XXXXX..... XXXXX. .. XXXXX...XXXXXX....XXXXX

Secondary structure is not uniquely determined by reactivity,
even with perfect data!



Reactivity Distributions

How well do reactivities distinguish paired from unpaired?



Reactivity Distributions

How well do reactivities distinguish paired from unpaired?

M =1 Paired
=1 Unpaired

-05 0.0 0.5 1.0 15 2.0
1M7 Reactivity

® Paired positions less reactive than unpaired
® Distributions overlap strongly
® Best distinction only for very large reactivities

® Negative values due to noise



Structure Prediction with Reactivities

How can we incorporate reactivities into structure prediction?
® Sample & Select:

® Predict candidate structures
® Select candidate that best fits measured reactivities
E.g. candidate s that maximizes P(r|s)

® Soft constraints:

® Derive a pseudo-energy from reactivities
® Modifies the energy model to prefer structures that fit the data



Deigan's Pseudo Energies

Position-dependent pseudo energy applied to stacking energies:
AG=min[ll+r]+b

e first implemented in RNAstructure

® most widely used method
e works (surprisingly) well, but ...
@ m and b have to fitted by probing known structures
@® Why change energy for positions that are already predicted
correctly?
© there is no good interpretation of the folding energies with the
pseudo energies



Zarringhalam Pseudo Energy

The Deigan pseudo-energy can make prediction worse by driving
the structure ensemble away from measured data.

@ Suppose position i is predicted to be 80% unpaired
@ Shape data suggest i is only 70% unpaired
© Pseudo-energy push towards even higher unpaired probability

Zarringhalam & Clote suggest adding a pseudo energy for structure T,
given probability g; (from measurement) that pos / is unpaired:

AGy(m) = Zﬂ |7 — qil, ;= 1if i unpaired, 0 if paired
i=1

This is guaranteed to always bring the ensemble closer to the
measurement.

Requires a model to convert reactivities r; into a probability to be
unpaired q;



Washietl Approach

® Both g (measurement) and NN energies are have errors.

® Predict the probability p; that pos i/ remains unpaired.
From this compute the discrepancy between measurement and
prediction ||p — q|.

® Task: Find a pseudo-energy that is (i) small and (ii)
minimizes the discrepancy between prediction and data.
Compute energy correction ¢, that minimize

F(a=2f+z (pi(®) — @)

o and 7 encode our trust in the energy parameters and experimental data.
Ensemble based — does not assume a single structure



Making use of the Perturbation Vector

Example: tRNA modifications

® Human mitochondrial tRNA-Lys does not fold correctly in vitro

® Methylation at position 9 restores folding to the cloverleaf shape
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Probabilistic Approach
Let P(r|m) be the likelihood of observing the reactivity vector r
given structure m on sequence x. The posterior probability of
structure 7 is
rlmw, x) - P(mj|x)
p(r)

P(m|r,x) = il

where the prior P(7|x) is the Boltzmann probability of 7
Assuming that r; only depends on the structure state 7; at pos i/,
maximizing P(7|r, x) is equivalent to adding a pseudo energy

AG(?T,', i) = —RTlog P(r,-\7r,-)

® First proposed by Sean Eddy

® \We're free choose which structure states to consider
e.g. three state model 7; € {unpaired, stacked, helix end}

® Still assumes that only a single structure 7 is present



Probing Data in ViennaRNA

PPV improvement over default MFE prediction
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Mutate-and-Map

Probing looks at single positions, how to learn about base pairs?

MedLoop i Bistable hairpin

® Mutate every position

e When mutation at i breaks a pair (i,),
reactivity of the partner j changes!

e — direct information about pairs (/,)

® sometimes mutations cause complete
refolding

® can identify alternative structures

Cordero, ..., Das (2014)



Structure Ensembles

What if our RNA can form multiple structures?

® Measured reactivity is an average over ensemble

r= Zp(ﬂ') - r(m)

Possible solutions:
® With a set of candidate structures: estimate p(7), minimize
discrepancy between observed and expected reactivity

® Need to guess candidates correctly

® Separate reads into clusters corresponding to different structures

® Assumption: Each read is produced by one structure in the ensemble
All mutations in a read derive from the same structure



Structure Ensembles

Two structure example:

CCCCCC 00000 v CCCCCC 0000 ))
GAAAGCC-G-GCUUUU--C-CCG-C-CAU-GGCUGG
GAAAGC-UG-GCUUUUG-C-CCGGCU-AUGGGCUGG
GAAAGC-UGUGCUUUUGCCACCGGCUCAUG-GCUGG
GAAAGC--GUGCUUUUG--ACCGGCUCA-GGGCUGG
GAAAGC-U-UGCUUUUGCCACCGGCUCA-~-G-CUGG
GAAAGCCUGUGCUUUU-CC-CCGGCUC--GGGCUGG
GAAAGCCUGUGC-UUUGCCACCGGCUC--G-GCUGG
GAAAGC---UGCUUUUG-CACC-GCUCAUGGGCUGG
GAA-GCCUGUGCUUU----ACCG-CUC-UGGGCUGG
GA--GCC-GUGCUUUUG-C-CCGGCUCAUGGGCUGG

o CCCCCCCCnns G0 0NN -
GAAAGCCUGU-CUUUUGCCA--GG-UCAUGGGCU-G
G-AAG-CUGUGCUUUUGCC-CCGG-U-AUGGGCU-G
---AGCCUGUGCUUUUGCCAC-GGCUCAUGGGCUGG
GA-AGCCUGUG-UUUUGCCACCGGC-CAUGGGCUG
GAAAGCCU-U-C-UU-GCCA--GGCUCAUGGGCUGG
-AAAGCCUGUGCUUUU-CCACCGGC-CAUGGGCU-G
GA-AGCCUGUGC-U-UG-CA-CGGCU-AUGGG--GG
GA-AGCCUGUGCUUUUG-CACCGGCUCAUG-GCU-G
GAAAGCCUGUGCUUU-GCCACCGGCUCAUGGGCUGG
~AAAGCCUGUGCUUUUGCCAC-GGCU-A-G-G-U-G

Measured Reactivity

Reactivity

012345678 910011213141516171 8192021222 2425262 26293031323 33435

Position



Structure Ensembles

Two structure example:

CCCCCCa M) e (e N
GAAAGCC-G-GCUUUU--C-CCG-C-CAU-GGCUGG
GAAAGC-UG-GCUUUUG-C-CCGGCU-AUGGGCUGG
GAAAGC-UGUGCUUUUGCCACCGGCUCAUG-GCUGG
GAAAGC--GUGCUUUUG--ACCGGCUCA-GGGCUGG
GAAAGC-U-UGCUUUUGCCACCGGCUCA--G-CUGG
GAAAGCCUGUGCUUUU-CC-CCGGCUC--GGGCUGG
GAAAGCCUGUGC-UUUGCCACCGGCUC--G-GCUGG
GAAAGC---UGCUUUUG-CACC-GCUCAUGGGCUGG
GAA-GCCUGUGCUUU----ACCG-CUC-UGGGCUGG
GA--GCC-GUGCUUUUG-C-CCGGCUCAUGGGCUGG

e CCCCCCCCenns D) NN ..
GAAAGCCUGU-CUUUUGCCA--GG-UCAUGGGCU-G
G-AAG-CUGUGCUUUUGCC-CCGG-U-AUGGGCU-G
---AGCCUGUGCUUUUGCCAC-GGCUCAUGGGCUGG
GA-AGCCUGUG-UUUUGCCACCGGC-CAUGGGCUG-
GAAAGCCU-U-C-UU-GCCA--GGCUCAUGGGCUGG
-AAAGCCUGUGCUUUU-CCACCGGC-CAUGGGCU-G
GA-AGCCUGUGC-U-UG-CA-CGGCU-AUGGG--GG
GA-AGCCUGUGCUUUUG-CACCGGCUCAUG-GCU-G
GAAAGCCUGUGCUUU-GCCACCGGCUCAUGGGCUGG
—~AAAGCCUGUGCUUUUGCCAC-GGCU-A-G-G-U-G

® Reads from the same structure
exhibit similar mutation
patterns

MaP reads (n = 1000)

® Reads can be separated into
clusters belonging to different
structures

25 30 35

15 2
Nucleotide position



Methods for Ensemble Deconvolution

Several methods exist to deconvolute reads

Method Clustering algorithm Number of clusters
DREEM Expectation-Maximization User specified
DRACO Spectral Clustering Automatic
DANCE-MaP  Expectation-Maximization Automatic

After deconvolution the structure corresponding to each cluster is
predicted separately

In the ideal case long-range tertiary interactions can be detected by
correlation between sites



RNA Crosslinking

RNA crosslinking can directly detect RNA-RNA interactions

- RNA fragmentation and Duplex proximity crosslink
RNA crosslinking biotinylation of crosslinked regions pulldown ligation reversal

Q

Mapping of reads to RNA Sequencing of chimeric RNA

5' read 3' read

-

® Psoralen induced crosslinking and pulldown
® — chimeric reads corresponding to two interacting regions
® Should give information on (hard to predict) long-range base

pairs



RNA Crosslinking

¢ |deal for detecting RNA-RNA interaction (read-pair from two
different RNAs)

® Challenges:

® No nucleotide resolution:
Interaction could be anywhere between the regions

® Cross-linking only implies that regions are closed, not base
paired

® High noise:
Many reads do not correspond to true interactions
In read-pairs from human 185/28S rRNA, more than 50% false
positives

Not widely used yet for secondary structure determination

DRACO and other programs can combine cross-linking and
SHAPE-Map data in a single analysis



Take Home Messages

Chemical probing is a fast and inexpensive
Can significantly improve structure prediction
Probing data are noisy and differ in quality

Probing signal is affected by other factors
® accessibility of a site in 3D structure
® non-canonical base pairs
® tertiary interactions
Structure ensembles complicate analysis
More reads and more mutations per read needed for
deconvolution



