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Experimental Structure Determination

High resolution structure determination

• X-ray Crystallography – requires crystals

• NMR spectroscopy – small RNAs only

• Cryo-EM – best for large RNA-protein complexes

• FRET – distance between just two fluorescent probes

Cheap alternative:
Structure probing:

• RNA is chemically modified in a structure dependent manner

• Readout via sequencing modified RNA



In-line probing

• Chain breaks happen spontaneously at room temperature

• Break points mostly in unpaired regions

• → structure dependent cleavage

• Can be accelerated by adding lead

1

1Mandal, . . ., Breaker, 2003



SHAPE Probing
Selective 2’-hydroxyl acylation analyzed by primer extension

• Probes flexibility rather than base pairing
paired nucleotides → C3’-endo sugar pucker → low reactivity

• Little sequence bias

• Several different reagents available (1M7, NMIA, NAI)

Deigan, Li, Mathews, Weeks 2009



DMS (Dimethyl Sulfate) Probing

• Modification on the WC edge

• Directly probes base pairing

• Mostly probes A and C, no data for G and U



Enzymatic Methods

• Use enzymes that cleave only single strand / double stranded
regions
often a pair of single strand / double strand specific enzymes

• Typically probes only specific nucleotides

• Only sites accessible to a bulky protein

• Not usable in vivo (in contrast to SHAPE and DMS)

Not as widely used anymore



How to measure Reactivity

• Old-school: Gel-electrophoresis

• Modern: Readout via sequencing
• SHAPE-Seq: Modification causes RT-stop
• SHAPE-MaP: Modification causes mis-incorporation

(mutation)

Perform experiment with and without reagent
measure mutation (or RT-stop) frequency mi at pos i

reactivity: ri =
mtreated

i −muntreated
i

mdenatured
i

MaP (mutational profiling) allows multiple mutations in a single
read!



Incompleteness
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Secondary structure is not uniquely determined by reactivity,

even with perfect data!



Reactivity Distributions

How well do reactivities distinguish paired from unpaired?
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• Paired positions less reactive than unpaired

• Distributions overlap strongly

• Best distinction only for very large reactivities

• Negative values due to noise
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Structure Prediction with Reactivities

How can we incorporate reactivities into structure prediction?
• Sample & Select:

• Predict candidate structures
• Select candidate that best fits measured reactivities

E.g. candidate s that maximizes P(r |s)

• Soft constraints:
• Derive a pseudo-energy from reactivities
• Modifies the energy model to prefer structures that fit the data



Deigan’s Pseudo Energies

Position-dependent pseudo energy applied to stacking energies:

∆G = m ln[1 + ri ] + b

• first implemented in RNAstructure
• most widely used method
• works (surprisingly) well, but . . .

1 m and b have to fitted by probing known structures
2 Why change energy for positions that are already predicted

correctly?
3 there is no good interpretation of the folding energies with the

pseudo energies



Zarringhalam Pseudo Energy

The Deigan pseudo-energy can make prediction worse by driving
the structure ensemble away from measured data.

1 Suppose position i is predicted to be 80% unpaired
2 Shape data suggest i is only 70% unpaired
3 Pseudo-energy push towards even higher unpaired probability

Zarringhalam & Clote suggest adding a pseudo energy for structure π,
given probability qi (from measurement) that pos i is unpaired:

∆Gk(π) =
n∑

i=1

β |πi − qi |, πi = 1 if i unpaired, 0 if paired

This is guaranteed to always bring the ensemble closer to the
measurement.
Requires a model to convert reactivities ri into a probability to be
unpaired qi



Washietl Approach

• Both q⃗ (measurement) and NN energies are have errors.

• Predict the probability pi that pos i remains unpaired.
From this compute the discrepancy between measurement and
prediction ∥p⃗ − q⃗∥.

• Task: Find a pseudo-energy that is (i) small and (ii)
minimizes the discrepancy between prediction and data.
Compute energy correction ϵµ that minimize

F (⃗ϵ) =
∑
µ

ϵ2µ
τ2µ

+
n∑

i=1

1

σ2
i

(pi (⃗ϵ)− qi )
2

σ and τ encode our trust in the energy parameters and experimental data.
Ensemble based – does not assume a single structure



Making use of the Perturbation Vector

Example: tRNA modifications

• Human mitochondrial tRNA-Lys does not fold correctly in vitro

• Methylation at position 9 restores folding to the cloverleaf shape
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Probabilistic Approach
Let P(r |π) be the likelihood of observing the reactivity vector r
given structure π on sequence x . The posterior probability of
structure π is

P(π|r , x) = P(r |π, x) · P(πi |x)
p(r)

.

where the prior P(π|x) is the Boltzmann probability of π
Assuming that ri only depends on the structure state πi at pos i ,
maximizing P(π|r , x) is equivalent to adding a pseudo energy

∆G (πi , i) = −RT logP(ri |πi )

• First proposed by Sean Eddy

• We’re free choose which structure states to consider
e.g. three state model πi ∈ {unpaired, stacked,helix end}

• Still assumes that only a single structure π is present



Probing Data in ViennaRNA

• All four pseudo-energy
methods supported in
ViennaRNA

• Probing data don’t always
improve prediction
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5’ domain of 16S rRNA, H. volcanii

5’ domain of 23S rRNA, E. coli
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Mutate-and-Map

Probing looks at single positions, how to learn about base pairs?

• Mutate every position

• When mutation at i breaks a pair (i , j),
reactivity of the partner j changes!

• → direct information about pairs (i , j)

• sometimes mutations cause complete
refolding

• can identify alternative structures

Cordero, . . . , Das (2014)



Structure Ensembles

What if our RNA can form multiple structures?

• Measured reactivity is an average over ensemble

r =
∑
π

p(π) · r(π)

Possible solutions:

• With a set of candidate structures: estimate p(π), minimize
discrepancy between observed and expected reactivity

• Need to guess candidates correctly

• Separate reads into clusters corresponding to different structures

• Assumption: Each read is produced by one structure in the ensemble
All mutations in a read derive from the same structure



Structure Ensembles

Two structure example:
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Structure Ensembles
Two structure example:
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• Reads from the same structure
exhibit similar mutation
patterns

• Reads can be separated into
clusters belonging to different
structures
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Methods for Ensemble Deconvolution

Several methods exist to deconvolute reads

Method Clustering algorithm Number of clusters
DREEM Expectation-Maximization User specified
DRACO Spectral Clustering Automatic
DANCE-MaP Expectation-Maximization Automatic

After deconvolution the structure corresponding to each cluster is
predicted separately
In the ideal case long-range tertiary interactions can be detected by
correlation between sites



RNA Crosslinking

RNA crosslinking can directly detect RNA-RNA interactions

• Psoralen induced crosslinking and pulldown

• → chimeric reads corresponding to two interacting regions

• Should give information on (hard to predict) long-range base
pairs



RNA Crosslinking

• Ideal for detecting RNA-RNA interaction (read-pair from two
different RNAs)

• Challenges:
• No nucleotide resolution:

Interaction could be anywhere between the regions
• Cross-linking only implies that regions are closed, not base

paired
• High noise:

Many reads do not correspond to true interactions
In read-pairs from human 18S/28S rRNA, more than 50% false
positives

Not widely used yet for secondary structure determination
DRACO and other programs can combine cross-linking and
SHAPE-Map data in a single analysis



Take Home Messages

• Chemical probing is a fast and inexpensive

• Can significantly improve structure prediction

• Probing data are noisy and differ in quality
• Probing signal is affected by other factors

• accessibility of a site in 3D structure
• non-canonical base pairs
• tertiary interactions

• Structure ensembles complicate analysis
More reads and more mutations per read needed for
deconvolution


