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What is RNA Bioinformatics?

Algorithms on sequences don’t care whether it’s RNA or protein,
so what’s special?

• In contrast to plain sequence analysis we’re interested in
structure

• When taking about structural bioinformatics most people
think protein structure – RNA is different.

• Structure can be described at many levels
Very useful for RNA work is usually the secondary structure



Why look at Structure?

• Basic paradigm of structural biology:
Sequence → Structure → Function

• Understanding structure is a first step toward function

• Function is what we’re ultimately interested in
Sequences is what we have in plenty

• Structure should be conserved more strongly than sequence

Structure based methods can succeed where sequence analysis fails
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Many non-coding RNAs are Structural RNAs

(a) Group I intron
(b) Hammerhead ribozyme
(c) HDV ribozyme
(d) Yeast tRNAphe

(e) L1 domain of 23S rRNA

Hermann & Patel, JMB 294, 1999

All the “classical” ncRNAs depend on well-defined and
evolutionary conserved structure



Known 3D Structures: Protein vs. RNA

Structures & residues in the PDB database over time

≤ 1980 1981-90 1991-2000 2001-10 2011-22 total % total
Proteins 78 634 12121 43205 108677 164715 91.57
AA ≤ 2Å 5050 45236 1609401 11390238 28513777 41 563 702 99.78
RNA 2 23 306 1392 4488 6211 3.45
nts ≤2Å 0 0 270 5974 26921 34 165 0.08

• Much fewer RNA 3D structure than protein

• Even more pronounced for residues and high-res structures

0Schneider et al, NAR, 2023



Basic Tasks

Mostly the same questions are the same as in sequence analysis
Here we want to base them on structure

• Structure prediction (sequence → structure)
(single or multiple sequences, w/o pseudo-knots, tertiary structure)

• Classification:
• Recognizing new members of a known RNA class (tRNAs,

snoRNAs, . . .)
• Homology searches — Given a novel RNA find all the homologs

where in Evolution did it first occur?

• De novo prediction
Annotate all functional RNAs in genomes or transcriptomes

• Many specialized problems for particular RNA classes
e.g. micro RNA target prediction



The RNA Molecule

Double helices formed by Watson-Crick AU, UA, GC, CG, GU, UG pairs.
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Isostericity of Watson-Crick Pairs



Double Helices

A-form B-form Z-form



The RNA Folding Problem

(((((.......((((....))))...((((((....)))))).))))

• Hierarchical folding: Secondary structure forms first then helices
arrange to form tertiary structure

• Secondary structures cover most most of the folding energy

• Convenient and biologically useful description

• Computationally easy to handle

• Tertiary structure prediction needs knowledge of secondary structure



Example 1: snoRNAs

Small nucleolar RNAs are trans-acting ncRNAs

• snoRNAs guide chemical modifications of rRNAs, snRNAs,
and some mRNAs.

• Characteristic secondary structure and sequence motifs

• Two tasks: How to recognize a snoRNA from its sequence?
How to predict the targets of a given snoRNA?
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Example 2: The Flavin Mononucleotide Riboswitch

Example for a cis-acting RNA element
The FMN-binding riboswitch in the free and bound state

• How can we find novel riboswitches?

• Can we predict how a novel riboswitch works?
Up-, or down-regulation; transcriptional or translational control?



Secondary Structure Definition
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A secondary structure is a set of base pairs (i , j) on a sequence x , with

• Any nucleotide (sequence position) can form at most one pair

• No pseudo-knots: No pairs (i , j) and (k, l) with i < k < j < l

• If (i , j) is a pair then xixj ∈ {GC,CG,AU,UA,GU,UG}
• If (i , j) is a base pair, then j − i > 3



Pseudo Knots

Excluding pseudo knots makes life easy, because

• It greatly simplifies the mathematical model
=⇒ Simpler algorithms without pseudo knots

• Many pk-structures are sterically not feasible

• Energetics unknown, except for a few data on
H-type pseudo-knots

On the other hand

• Pseudo knots can have important function

• First step toward tertiary structure

• H-type knots are tractable with extra
computational effort
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Representation of Secondary Structures
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RNA Secondary Structure as Trees
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string algorithms to trees



Representing Ensembles of Structures
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Ensembles of structures (ther-
modynamic equilibrium) are
best represented by base pair
probabilities.
A pair (i , j) with probability p is
represented by a square in row
i and column j with area p.
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Forces stabilizing biomolecular Structures

• Hydrogen bonds

• π − π stacking

• Coulomb interactions

• Van der Waals Interactions

• Hydrophobic effect

• Conformational Entropy
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Forces stabilizing biomolecular Structures

• Hydrogen bonds

• π − π stacking ← most important for RNA

• Coulomb interactions

• Van der Waals Interactions

• Hydrophobic effect ← most important for protein

• Conformational Entropy



Loop Decomposition

Secondary structures can be uniquely decomposed into loops.
Loops are the faces of the secondary structure graph.
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Nearest Neighbor Energies

Free energy of a structure approximated as the sum of loop
energies

• Good approximation for most
oligo-nucleotides

• Loop energies depend on loop type and size,
with some sequence dependence

• Most relevant parameters measured
experimentally, some still guesswork

• Free energies are dependent on temperature
and ionic conditions

• Training parameters is becoming an
alternative to experiment

G

C
U
U

C

C

G

A

A U

U
C

G

G

U

G

C
−3.4

−3.3

+3.5

+1.2

−2.4

Total −4.4 kcal/mol



Stacked Pairs

• Major source of stabilizing energy

• all 21 combinations measured, accuracy ≈ 0.1 kcal/mol

• include the hydrogen bonding energy of pair formation

• energies of tandem G·U pairs depend on context, i.e.
violate the nearest-neighbor model

G
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U

C

−2.4
kcal/mol

(i + 1, j − 1)
CG GC GU UG AU UA

(i , j) CG -2.4 -3.3 -2.1 -1.4 -2.1 -2.1
GC -3.3 -3.4 -2.5 -1.5 -2.2 -2.4
GU -2.1 -2.5 1.3 -0.5 -1.4 -1.3
UG -1.4 -1.5 -0.5 0.3 -0.6 -1.0
AU -2.1 -2.2 -1.4 -0.6 -1.1 -0.9
UA -2.1 -2.4 -1.3 -1.0 -0.9 -1.3

For comparison: Thermal energy RT ≈ 0.6kcal/mol at 37C.



Determining Nearest Neighbor Parameters

UV absorption can distinguish between double and single stranded
nucleic Acids — Hyperchromicity



Determining Nearest Neighbor Parameters

UV absorption (at 260nm) can be used to follow the unfolding
transition as a function of temperature.



Analyzing UV Melting Curves

Assume a 2-state model

funfolded(T ) =
A(T )− A(Tmin)

A(Tmax)− A(Tmin)

Keq =
funfolded
ffolded

= e−∆G/RT



Van’t Hoff Analysis

lnKeq = −∆G

RT
= −∆H

RT
+

∆S

R



Turner Nearest Neighbor Parameters

• Up-to-date parameter sets available at the NNDB
rna.urmc.rochester.edu/NNDB

• Up top 10000 entries per table

• Many tied entries, only 294 independent parameters

• Derived from 802 optical melting experiments

• Similar sets available for single stranded DNA

Parameters can also be learned from RNAs with known structure
Danger of overfitting, since most known structures come from few
families

rna.urmc.rochester.edu/NNDB


The RNA Conformation Space

The number of secondary structures for a sequence x = x1 . . . xn
can be enumerated recursively:

i jj i i+1 j i i+1 k−1 k k+1
|=

Sij = Si+1,j +

j∑
k=i+m

Si+1,k−1Sk+1,j pair(xk , xj)

pair(xk , xj) = 1 if xkxj is a canonical pair
(GC, CG, AU,UA,GU,UG)
otherwise pair(xk , xj) = 0.
For typical sequences the number of conformations grows as

S1n ∼ n−
3
2 1.85n



Solving the Folding Problem

Toy model for RNA folding: assign energies to base pairs ε(x , y).
Easily solved by Dynamic Programming, i.e.:
Recursive computation with tabulation intermediate results.

i jj i i+1 j i i+1 k−1 k k+1
|=

Eij = min
i<k≤j

{
Ei+1,j ;

(
Ei+1,k−1 + Ek+1,j + ε(xi , xk)

)}
• E1n is the best possible energy for our sequence x .

• Backtracing through the E table yields the corresponding structure.

• The Algorithm requires O(n2) memory and O(n3) CPU time.

In practice this toy model is not good enough!
For serious predictions, we need to use loop dependent energies.



Folding using Nussinov’s Algorithm
ε(C ,G ) = ε(G ,C ) = −3 ε(A,U) = ε(U,A) = −2
ε(G ,U) = ε(U,G ) = −1

Eij = Ei+1,j | Ei+1,k−1 + Ek+1,j + ε(xi , xk)
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ε(G ,U) = ε(U,G ) = −1

Eij = Ei+1,j | Ei+1,k−1 + Ek+1,j + ε(xi , xk)

. ( ( . ( . . . ) ) )

A G C A C A C A G G C

0 0 0 0 0 0 -3 -3 -3 -6 -9 A

0 0 0 0 0 -3 -3 -3 -6 -9 G

0 0 0 0 0 0 -3 -6 -6 C

0 0 0 0 0 -3 -3 -3 A

0 0 0 0 -3 -3 -3 C

0 0 0 0 0 0 A

0 0 0 0 0 C

0 0 0 0 A

0 0 0 G

0 0 G

0 C



Algorithms for Secondary Structure Prediction

The principle of Dynamic programming is used in many algorithms
for RNA structure prediction in many different flavors.

• Minimum free energy structure (Zuker & Stiegler ’81)

• Optimal and certain suboptimal structures (Zuker ’89)

• All structures within an energy range (Wuchty et al. ’99)

• Partition function and base pair probabilities (McCaskill ’90 )

• Stochastic suboptimals (Ding & Lawrence ’01)

• Maximum expected accuracy structures (Do et al ’06)

• Consensus structure prediction from alignment
(Knudsen & Hein ’99, Hofacker et al. ’02)

• Minimum free energy with pseudo-knots (Rivas & Eddy ’99)

• Extended secondary structures with non-canonical pairs
(Parisien & Major ’08, Höner et al ’11)



Folding with Loop based Energies
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Fij free energy of the optimal substructure on the subsequence x [i ..j ].

Cij optimal free energy on x [i ..j ], where (i , j) pair.

Mij x [i ..j ] is part of a multiloop and contains at least one pair.

M1
ij same as Mij but contains exactly one component closed by (i , h).



Minimum Free Energy Folding and Accuracy

MFE folding predicts, the optimal, most probable, structure.

+ easy to program, calculate, and interpret

− one structure to represent the equilibrium ensemble

− no indication of reliability

Accuracy measured by comparison with (phylogenetic) model
structures.

• about 40-70% accuracy with current parameters

• accurate structures can usually be found within small energy
increment of the MFE



How accurate is it?

• Accuracy varies widely between RNA families

• Better for shorter RNAs with less complex structures

• Hardly any difference between programs



Limits to prediction accuracy

A number of different factors contribute to the inaccuracy of our
predictions:

• Limited accuracy of energy parameters

• Beyond secondary structure:
Pseudo-knots, 3D structure, G-quadruplexes, non-canonical
pairs

• Deviation from “standard” conditions
Ion concentrations (esp. Mg2+), temperature

• Interaction with other molecules:
RNA interact with proteins other RNAs and metabolites

• Posttranscriptional RNA modifications

• Folding kinetics:
native structure ̸= ground state structure



Does Training Parameters help?

modified from Rivas et al. 2012

• Improved performance on RNA families used for training

• No improvement for unrelated RNAs

• Never the use the same RNA family in training and testing

• Limiting sequence similarity is not enough!
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Deep Learning for Structure prediction

• Early deep learning methods reported huge accuracy
improvements

• . . . but training and test sets are drawn from the same families

• → Neural Networks recognize homolog structures
rather than predict structures de novo

• DNNs can generalize to new sequences

• Don’t generalize well to new structures



Deep Learning for Structure prediction

• Early deep learning methods reported huge accuracy
improvements

• . . . but training and test sets are drawn from the same families

• → Neural Networks recognize homolog structures
rather than predict structures de novo

• DNNs can generalize to new sequences

• Don’t generalize well to new structures



Datasets for Training

Largest and widely used data set: bpRNA (Danaee et al., 2018)

• 100 000 sequence/structure pairs

• Collected from 7 databases

• CRW: SSU, LSU, and 5S rRNAs

• RFAM 12.2: 2588 families
but 82% rRNA, 9% tRNA

CRW: 55600

RFAM: 43273

SRP: 959

tmRNA: 728

PDB : 669

tRNA: 634

RNP: 466

82% rRNA
  9% tRNA

→ Many sequences, but low structural diversity!



Effect of Biased Training Sets

Fu et al, 2022



Synthetic Data sets to Explore the Effect of Biases

How can we mimic training data with low structural diversity using
synthetic data?

• Take all structures from bpRNA length ≤ 120

• For each structure design a sequence using RNAinverse

• Resulting data set has same structure distribution as bpRNA

• No homology, very low sequence similarity

After training with these data set, test performance on two test
sets:

1 A test set produced in the same way by RNAinverse:
unrelated sequences, but same structure bias

2 Di-nucleotide shuffling of training sequences:
same sequence composition, but unrelated structures
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Synthetic Data sets to Explore the Effect of Biases

How can we mimic training data with low structural diversity using
synthetic data?

• Take all structures from bpRNA length ≤ 120

• For each structure design a sequence using RNAinverse

• Resulting data set has same structure distribution as bpRNA

• No homology, very low sequence similarity

After training with these data set, test performance on two test
sets:

1 A test set produced in the same way by RNAinverse:
unrelated sequences, but same structure bias

2 Di-nucleotide shuffling of training sequences:
same sequence composition, but unrelated structures



Performance with the bpRNAinv data set

Reimplementation of SPOT-RNA trained on synthetic data

Training set bpRNAinv-120

Test set bpRNAinv-120

Shuffled bpRNAinv-120

Validation bpRNAinv-120

• Performance on novel sequences with known structures as
good as training set

• Poor performance when structures are dis-similar to training
structures



Limits to prediction accuracy

Limited prediction accuray is due to

• Model simplifications

• not energy parameters

How deal with it?

• Don’t rely on a single structure

• Don’t assume there is a single native structure

• Include external information



Representing Ensembles of Structures
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Partition Function, Boltzmann and Pair Probabilities

The partition function Z is the fundamental quantity of statistical
mechanics. All thermodynamic properties can be derived from it.

• Partition function Z =
∑

s exp
(
−E(s)
RT

)
• Boltzmann probability of a structure s: p(s) = 1

Z exp
(
−E(s)
RT

)
• Expected value of any quantity A: ⟨A⟩ =

∑
s A(s)p(s)

• Free energy F = −RT lnZ

• Entropy S = − ∂F
∂T
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Partition Function, Boltzmann and Pair Probabilities

The partition function Z is the fundamental quantity of statistical
mechanics. All thermodynamic properties can be derived from it.

• Partition function Z =
∑

s exp
(
−E(s)
RT

)
• Boltzmann probability of a structure s: p(s) = 1

Z exp
(
−E(s)
RT

)
• Expected value of any quantity A: ⟨A⟩ =

∑
s A(s)p(s)

• Free energy F = −RT lnZ

• Entropy S = − ∂F
∂T



Constrained Parition Functions

Probability of some feature A. Compute the constraint partition
function

ZA =
∑

s has feature A

exp

(
−E (s)
RT

)
, p(A) =

ZA

Z

• Probability of forming the pair (i , j)

• probability of forming an aptamer structure

• probability of presenting a binding site

• . . .



Computing Partition Function and Pair Probabilities

For simplicity back to the Nussinov model:
Computing the partition function Z =

∑
Ψ exp(−E (Ψ)/RT ) is

simple:

Zij = Zi+1,j +
∑

k, (i ,k) pairs

Zi+1,k−1Zk+1,j exp(−εik/RT ) .

In conjunction with the partition function Ẑij for structures outside
the subsequence x [i ..j ] we can compute pair probabilities:

pij = ẐijZi+1,j−1 exp(−εij/RT )/Z .



Pair Probabilities

Equilibrium probabilities for all possible pairs can be calculated via
McCaskill’s partition function algorithm:
• provides a rigorous description of

structures in thermodynamic
equilibrium

• probability dot plots contain entropic
terms not included in energy dot plots

• starting point for measures of
reliability and well-definedness

− not as easy to interpret as a small set
of structures
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Well-defined Regions

Pair probabilities can help judge the reliability of a prediction.

Well-definedness: Are there many structural alternatives?

e.g. “ensemble diversity” (returned by RNAfold) measures
dissimilarity of structural alternatives
Computed directly from pair probabilities ⟨d⟩ =

∑
i,j pij · (1− pij)

Local reliability: Which parts the prediction we can trust?

High probability pairs are almost always correct.
Secondary structure plots can be colored by pair probability or
“positional entropy” to highlight reliable and unreliable regions.
positional entropy is computed from pair probabilities as S(k) = −

∑
i pik ln pik



Structures with reliability annotation
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Alternatives to the MFE as “best” Structure

Maximum Expected Accuracy (MEA)
• Select the structure expected to have the most base pairs correct

• → Maximize the sum of pair probabilities < A >=
∑

(i,j)∈S pij
• Computed by “Nussinov”-like dynamic programming

Centroid Structure
• Choose the structure that is “nearest” to all other structure in the

Boltzmann ensemble

• Minimize < d(S) >=
∑

(i,j)∈S pij +
∑

(i,j)/∈S(1− pij)

• Trivial solution: just pick all pairs with probability > 0.5

No free lunch: Centroid and MEA structure may correspond to a
very unlikely structure!



Suboptimal Structures

Zuker’s p-suboptimal structures (mfold)

For each pair (i , j) generate the best structure containing that pair.

+ easy to compute by multiple backtracking

+ present a user with few, representative alternatives

− important alternatives can be missed

− somewhat arbitrary selection of representatives

Complete suboptimal folding

generates all structures within given energy range from the mfe.

+ Calculate any thermodynamic average

+ Investigate the energy landscapes, e.g. find low-lying local minima

− huge amount of data, only for moderately short sequences

Stochastic suboptimal structure

generate Boltzmann weighted sample through stochastic backtracking



Stochastic Sampling

• Almost any quantity of interest can be approximated by
Boltzmann sampling

• ⟨A⟩ =
∑

s A(s)p(s) is impractical compute

• Much easier:

⟨A⟩ ≈ 1

N

∑
s∈sample

A(s)

• Sampling errors proportional 1√
N

• N ≈ 1000 is often sufficient



Dot Plots and suboptimal Structures

Zuker suboptimal structures may miss important alternatives

GUCCGCAGUUGCGGACUGCCCGUAAUUGCGGGCGUUCGUGUAUGCGAACGGCUCGUGUAUGCGAGC
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Variations on Backtracing

What we need:
• Let π be a partial structure consisting of

• Ωπ a set of already known base pairs
• Υπ a list of sequence intervals with unknown structure

• E (π) best energy that can be obtained by completing π

• S a stack of partial structures to be processed



Variations on Backtracing

MFE backtracing:

∅→ S.
while S ̸= ∅ do

π ← S;
if π is complete then output π
[i , j ] = I ∈ Υπ.
π′ = π◀(i)
if E (π′) = Eopt

then π′ → S; next;
for all k ∈ [i , j ] do

π′ = π◀(i , k)
if E (π′) = Eopt

then π′ → S; next;



Variations on Backtracing

Wuchty suboptimals

∅→ S.
while S ̸= ∅ do

π ← S;
if π is complete then output π
[i , j ] = I ∈ Υπ

π′ = π◀(i)
if E (π′) ≤ Eopt +∆E
then π′ → S;

for all k ∈ [i , j ] do
π′ = π◀(i , k)
if E (π′) ≤ Eopt +∆E
then π′ → S;



Variations on Backtracing

Stochastic backtracing

∅→ S.
while S ̸= ∅ do

π ← S;
if π is complete then output π
[i , j ] = I ∈ Υπ

r = Z (π) · rand();
π′ = π◀(i); r = r − Z (π′)
if r ≤ 0 then π′ → S; next;
for all k ∈ [i , j ] do

π′ = π◀(i , k); r = r − Z (π′)
if r ≤ 0 then π′ → S; next;



SCFG based Methods

Stochastic Context Free Grammars

• An extension to HMMs that can handle long range
correlations

• Formally, a CFG is a tuple G = (V , α, S ,R) of
Alphabet α, nonterminals V , Start symbol S , and rewrite
rules R

• Stochastic CFG adds probabilities to each rule

• Generates sequences using a series of rewriting rules

• Well known repertoire of algorithms that work on any SCFG



Nussinov Algorithm as SCFG

i jj i i+1 j i i+1 k−1 k k+1
|=

S → aS |cS |gS |uS
S → PS

S → ∅
P → aSu|uSa|cSg |gSc |gSu|uSg

• Applying grammar rules produces an RNA sequence

• The parse tree of productions used corresponds to the structure

• A stochastic CFG assigns probabilities to each production rule

• CYK algorithm finds the parse tree (structure) most likely to
produce the given sequence



The Pfold Grammar

Nussinov grammar neglects stacking → poor accuracy
Can we improve this?

S → LS | L
L → U |P
F → P | LS
P → aFu | uFa | cFg | gFc | gFu | uFg
U → a | c | g | u

• Distinguishes helix initiation, elongation, termination
• Only slightly worse prediction than full Turner model
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SCFGs vs Energy directed folding

Many RNA related algorithms come in two flavors, based on either

energy directed folding or stochastic context free grammars

physics based model
parameters from experiment

probabilistic inference
parameters learned from data

Algorithms are mostly analogous, but terminology is different!

MFE folding
pair probabilities

CYK algorithm
Inside/Outside algorithm



Beyond classical secondary structure

State of the art in RNA secondary structure prediction:

• Classical secondary structure considers only 6 types of pairs
CG,GC,AU,UA,GU,UG

• All base pairs are assumed to be Watson-Crick type

• Loops are drawn as unstructured bubbles

• Energy model assigns free energies to each loop

Can we improve the level of detail?



Leontis-Westhof classification

Watson-Crick base pairing is only part of the story!

Overall 12 different pairing types for any two bases
Starting point for defining recurring tertiary structure motifs



Leontis-Westhof classification

In structure drawings the interacting edge (Watson-Crick, Hoogsteen, Sugar) is represented by a circle, square, or

triangle



Base triples

A base can pair at two different edges forming base-triples



2D and 3D Structures

Looking at known tertiary structures
we find that:

• “Loops” are not unstructured

• full of non-canonical base pairs

• all 16 [ACGU]×[ACGU]
combinations form pairs

• the same two nucleotides can
pair in many different ways
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Predicting extended secondary structures

MC-Fold by Parisien & Major (Nature 2008) Can we include
non-canonical pairs in prediction?

• Folding algorithms can be easily extended

• More DP matrices (for each of the 12 pairing types)
still same O(n3) complexity

• Implemented in MC-Fold by Parisien & Major
(originally inefficient with exponential runtime)

. . . causes parameter explosion

• 12x12x16x16 ≈ 36000 stacked pair parameters

• No free energies from experiments

• Limited training data (3D structures)
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