

From Sequence to 2D Structure

Practicals

Setup

- Clone the Git Repository
<https://github.com/ViennaRNA/ViennaRNA-Tutorial>
- You need an editor to view Jupyter-Notebooks or Jupyter-Lab and Conda installed
- Alternatively, upload the Notebooks and the folder 2_input to a Google-Colab environment (easy alternative for Windows)

Structure of the Practical

- First Part:
 - How can we predict secondary structures using the ViennaRNA Package
 - 1_ViennaRNA_Introduction.ipynb
 - Brief introductions; Small tasks; Discussion of results
- Second Part:
 - Reproduce a research paper using the techniques from session 1
 - 2_Practical_Example.ipynb and 2_input

Part 1: ViennaRNA Package Introduction

- Very expansive package covering RNA secondary structures
- Usage modes: **Command-Line Tools**, **Python-API**, C-API
- Object-oriented programming
 - Create *RNA.fold_compound(sequence)*
 - Use member function to change settings or start computations
 - fc stores sequence, settings and intermediate calculation results

Energy Evaluation

- Evaluate the energy of a given RNA sequence/structure pair
- Also provides detailed information on what each loop contributes to the total energy

```
import RNA

sequence = "CUACGGCGCGGCCUUGGCGA"
ss = ".....(((...)))."
fc = RNA.fold_compound(sequence)

energy = fc.eval_structure_verbose(ss)
```

Minimum Free Energy

- To find the secondary structure with the lowest free energy
- Can use the command-line tool RNAfold

```
import RNA  
  
sequence = "CUACGGCGCGGCCUUGGCGA"  
  
fc = RNA.fold_compound(sequence)  
(ss, mfe) = fc.mfe()
```

Task 1

Structure Ensemble

- Sequences can fold into a whole ensemble of structures, which can have very similar free energies
- Properties of the ensemble are often more informative than only looking at the MFE-structure
- After storing the partition function in the *fold_compound*, can access properties of the ensemble

```
import RNA

sequence = "CUACGGCGCGGCCUUGGCGA"

fc = RNA.fold_compound(sequence)
bpp, efe = fc.pf()
```

Structure Ensemble Properties

- Free energy of the ensemble
- Base pairing probabilities of individual positions
 - Given in a upper triangular matrix
- Frequency of a given structure in the ensemble
- Centroid structure
 - Minimizes the weighted average distance to other structures of the ensemble

Suboptimal Structures

- Find structures which have an energy close to the MFE

```
import RNA

sequence = "CUACGGCGCGGCCUUGGCGA"

fc = RNA.fold_compound(sequence)

subopt_structures = fc.subopt(delta=100, sorted=True)
```

- Or sample representative structures from the ensemble
 - Can be used to approximate uncommon properties where an exact algorithm is not implemented

Hard Constraints

- Find the lowest energy structure under constraints that certain positions are paired or unpaired.
- Useful when parts of the structure are already known
- Are represented using a pseudo dot-bracket notation

```
sequence = "CUACGGCGCGGCCUUGGCGA"  
constraints_bp = ".....((xxx))"  
  
fc = RNA.fold_compound(sequence)  
fc.constraints_add(constraints_bp, RNA.CONSTRAINT_DB_DEFAULT | RNA.CONSTRAINT_DB_ENFORCE_BP)  
(ss, mfe) = fc.mfe()
```

Soft Constraints

- Allow for a more subtle guiding of the folding by adding a bonus energy to certain motifs like
 - Individual base pairs
 - Unpaired positions
 - Larger structures like hairpins
- Can be used to integrate chemical probing data or RNA-ligand interactions into a prediction

```
import RNA
sequence = "CUACGGCGCGGCCUUGGCGA"
fc = RNA.fold_compound(sequence)
fc.sc_add_bp(5, 15, -0.5)
(ss, mfe) = fc.mfe()
```

Consensus Structure

- Used when multiple sequences fold into the same structure
- Calculate an alignment of the sequences
- Use covariation in the alignment to inform structure prediction

CCCCAAAGGGG
GCCCAAUGGGC
AUGCUAAGCAU

Consensus Structure

- Used when multiple sequences fold into the same structure
- Calculate an alignment of the sequences
- Use covariation in the alignment to inform structure prediction

CCCCAAAGGGG
GCCCAAUGGGC
AUGCUAAGCAU

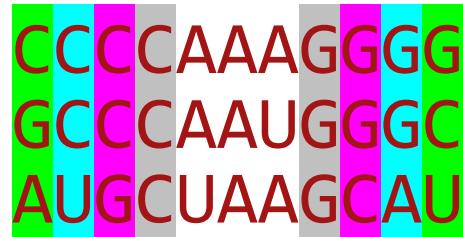
Consensus Structure

- Used when multiple sequences fold into the same structure
- Calculate an alignment of the sequences
- Use covariation in the alignment to inform structure prediction

A diagram illustrating a consensus sequence. Three RNA sequences are aligned vertically: CCCAAAGGGG, GCCCAAUGGGC, and AUGCUAAGCAU. The first two sequences are in red, and the third is in black. Vertical green bars are positioned at the start and end of the first and second sequences, indicating the consensus region. The third sequence is entirely black, suggesting it is not part of the consensus or is a reference sequence.

CCCAAAGGGG
GCCCAAUGGGC
AUGCUAAGCAU

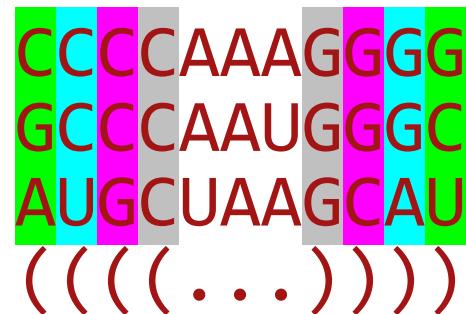
Consensus Structure


- Used when multiple sequences fold into the same structure
- Calculate an alignment of the sequences
- Use covariation in the alignment to inform structure prediction

CCCAAAGGGG
GCCCAAUGGGC
AUGCUAAGCAU

Consensus Structure

- Used when multiple sequences fold into the same structure
- Calculate an alignment of the sequences
- Use covariation in the alignment to inform structure prediction



A consensus sequence alignment is shown as three horizontal lines of nucleotides. The lines are color-coded: the top line is red, the middle line is blue, and the bottom line is green. Vertical bars of different colors (green, blue, red, and grey) are placed between the lines to indicate matching nucleotides or positions of variation. The sequence reads: Line 1 (red): CCCCAAAGGGG; Line 2 (blue): GCCCAAUGGGC; Line 3 (green): AUGCUAAGCAU.

CCC	CAA	AGG	GGG
GCC	CAA	UGG	GC
AUG	CUA	AGCAU	

Consensus Structure

- Used when multiple sequences fold into the same structure
- Calculate an alignment of the sequences
- Use covariation in the alignment to inform structure prediction
 - RNAalifold
 - *fold_compound* can also be created using an alignment

Pair Table Representation

- Dot-bracket notation not perfect for many applications

- Pair table: $((((\dots))))$

- [9, 9, 8, 7, 0, 0, 0, 3, 2, 1]

Length

0 if unpaired

Base 1 index of partner

Pair Table Representation

- Dot-bracket notation not perfect for many applications

import RNA

```
ss = ".....))...."
ss_pt = RNA.pltable(ss)

for pos_i in range(1, ss_pt[0]+1):

    if structure_pt[pos_i] == 0:
        #Unpaired
        break

    if structure_pt[pos_i] < i:
        continue

    if structure_pt[pos_i] > pos_i:
        # pos_i paired with structure_pt[pos_i]
```

Task 8

Part 2: Introduction

- Predicting the structure of an alignment often more reliable due to covariation information (See RNAalifold)
- Structure of the alignment can not always be directly translated to individual sequences (focal sequence)

CACUAAAUGUG
(((...))))

CCGG--ACCGG
(((...))))

CCCAUCGACAUUUGUCGGAGGG
((.....))))

Strategy I – Hard constraints

- Extract all valid base pairs from the consensus structure
- Use them as hard constraints to refold the focal sequence

CACUAAAUGUG

((((...))))

((((.....))))

CCGG--ACCGGG

(((((..).))))

((((.---..))))

CCCAUCGACAUUUGUCGGAGGG

((((.....))))

((((.....))))

Strategy II – Soft constraints

- Use the structure ensemble of the alignment to calculate base pair probabilities
- For features μ (base pairs) with a non-zero probability, determine a bonus energy Γ_μ which can be added as a soft constraint
- $\Gamma_\mu = G_\epsilon[\mu] - G_\epsilon[\neg \mu]$

CACUAAAUGUG
(((...)))
(((....)))

CCGG--ACCGG
(((...)))
(((.-.-)))

CCCAUAGGGAUUUCUUUGAAAU
(((...))).....
(((...))).....