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[Thanks to Hua-Ting Yao for a number of slides]
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RNA Design

Structure design as “inverse folding”

More generally: Generating RNA sequences with desired functions

→ biotechnology, RNA-based therapies, mRNA vaccines. . .
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Complex RNA design

Design riboswitches for gene control

+

Complex constructs: AND-Riboswitch (with G. Domin et al., 2017)
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Design of xrRNA riboswitch

xrRNA

[Leonhard Sidl, MT Wolfinger, HT Yao...]
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Design of SAM-I aptamer

• Aim for similarity with MSA

• Learn generative model from MSA (RBM)

• Compatibility with target structure (with PKs)

• Avoid off-targets

[Jorge Fernandez-de-Cossio-Diaz, 2024]
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Design of SAM-I riboswitch
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[Jorge Fernandez-de-Cossio-Diaz, 2024]

Generation (Sampling):
• targets: compatibility, energy
• sequence similiarity

Refinement (Stochastic optimization):
• avoid off-targets
• relative stability bound/unbound
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RNA structure design: positive and negative

Positive design: Target a structure

→ optimize affinity to target structures t

find sequence σ
with E (σ, t) = minσ′(σ′, t)

extensions: multiple targets, properties, . . .

Negative design: Avoid all off-targets

→ specificity for targets

find design σ, s.t.
E (σ, t) = mint′ E (σ, t

′) =: MFE (σ)

refined objectives: probability, ensemble, . . .
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Hello world of positive design!
(single target structure, base pair energy)

IN: target structure t of length n
“base pair energy” E (σ, t) =

∑
(i ,j)∈t ebp(σi , σj) +

∑
i unpaired in t eu(σi )

Task: sample from the Boltzmann distribution of sequences; i.e. sample σ with probability

Pr[σ] ∼ exp(−βE (σ, t)) for some inverse temperature β

Observation: bases and base pairs can be generated independently of each other!

Algorithm

1) for each unpaired i : choose σi with Pr [σi ] ∼ exp(−βeu(σi ))

2) for each pair (i , j) ∈ t: choose σi and σj with Pr [σi , σj ] ∼ exp(−βebp(σi , σj))

What happens for complex energy models or multiple targets? (dependencies!)
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Infrared

General efficient framework for weighted constraint solving.
⇒ Rapid development of bioinformatics tools (including design)

Infrared solves a weighted form of constraint problems (CSP → Feature Networks)
It allows us to describe (“model”) problems; then solves them automatically.

[Hua-Ting Yao et al., 2024]
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Constraint Satisfaction Problems (CSPs)

Definition: A CSP is a tuple (X ,D, C), where
• X = {X1, . . . ,Xn} is a set of variables

• D = {D1, . . . ,Dn} is a set of corresponding finite domains

• C is a finite set of constraints

Each constraint C is associated with k variables.

Solutions of a CSP are assignments of domain values to the variables that satisfy all
constraints (valid assignments).

General solving is NP-hard! Solving strategies?

• Generic, heuristic solving strategies: backtracking search + constraint propagation

• . . . Infrared is specialized to problems with nearly tree-like dependencies
we gain: efficient (fpt) exact optimization + controlled sampling!
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CSP Examples: Graph Coloring and N-Queens

A v1 v2 v3

v4 v5 v6

v7 v8 v9

B v1 v2 v3

v4 v5 v6

v7 v8 v9

Constraints: Adjacent nodes differ in color!

CSP = (X ,D, C)
• X = {X1, . . . ,X9}

• D = {X1 7→ [1..4], . . . ,X4 7→ [1..4]}

• C = {Xi ̸= Xj | i , jadjacent}

model = Model(9,(1,4))
model.add_constraints(

NotEquals(i,j) for i,j in edges)

X1 = 3
X2 = 1
X3 = 4
X4 = 2

Constraints: no attacks!

CSP = (X ,D, C)
• X = {X1, . . . ,X4}

• D = {X1 7→ [1..4], . . . ,X4 7→ [1..4]}

• C = {Xi ̸= Xj | 1 ≤ i < j ≤ 4}
∪{Xi + i ̸= Xj + j | 1 ≤ i < j ≤ 4}
∪{Xi − i ̸= Xj − j | 1 ≤ i < j ≤ 4}

model = Model(4,(1,4))
model.add_constraints(NotEquals(i,j)

for i in range(4) for j in range(i+1,4))
model.add_constraint( ...
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Dependency graph and tree decomposition

A v1 v2 v3

v4 v5 v6

v7 v8 v9

B v1 v2 v3

v4 v5 v6

v7 v8 v9

model = Model(9,(1,4))
edges = [(1,5), (2,3), (2,5), ... ]
model.add_constraints(NotEquals(i,j)

for i,j in edges)

2 5 6
7 8

2 3
5 6

1 5 4

5 6
8 9

5 6
7 8

2 5
6 7

5 6
9

1 5 4

2 3
6

Tree decomposition (T , χ); T = (V ,E ):

1. every variable occurs in one bag v ∈ V

2. for every constraint and function: there is
one bag that contains its variables

3. for each variable: the bags containing it are
connected

Tree width = size of largest bag - 1

Remarks:

• Conditions 1–3 allow solving by dynamic
programming (solve from smaller to
larger subtrees)

• Condition 2 → every constraint and
function can be processed in some bag
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Adding functions → Objective function

Make it more interesting by adding some functions

A v1 v2 v3

v4 v5 v6

v7 v8 v9

B v1 v2 v3

v4 v5 v6

v7 v8 v9

model = Model(9,(1,4))
model.add_constraints(NotEquals(i,j)

for i,j in edges)

# extend by card feature
model.add_functions([Card(i,j,k,l)

for i,j,k,l in fourcycles],’card’)

X1 X2 X3

X4 X5 X6

X7 X8 X9

Cluster tree (T , χ, ϕ)

2 5 6
7 8

2 3
5 6

1 5 4

5 6
8 9

Card2,5,7,8

Card2,3,5,6

Card5,6,7,8
=5,8

=6,8

=2,3

=2,7
=5,7

=1,5

=3,6

=5,9

=6,9

=2,5

=5,6

=7,8
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Feature Networks

Feature networks add quality of solutions → features.

Definition
A Feature Network is a tuple N = (X ,D, C,F), where

• X = {X1, . . . ,Xn} is a set of variables

• D = {D1, . . . ,Dn} is a set of corresponding finite domains

• C is a finite set of constraints

• F is a finite set of features, which consist of feature functions

Features . . .

• evaluate assignments as F (x) =
∑

f ∈F f (x)

• define the evaluation function EN (x , α) =
∑

F∈F αFF (x) for weights αF
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Infrared solves the sampling problem

Problem (Assignment sampling)

Input: Feature Network N , feature weights α

Output: Valid assignment x ∈ AX generated with a probability that is proportional
to its Boltzmann weight

P(x) ∝ exp (EN (x , α)) .

α = (αF )F∈F vector of weights

Evaluation function: EN (x , α) =
∑
F∈F

αFF (x).
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Modeling: Single structure design

X0 X1 X2 X3 . . . X32 X33 X34 X35

0:A 1:C 2:G 3:U

import infrared as ir
import infrared.rna as rna

model = ir.Model(35, 4 0 : A 1 : C 2 : G 3 : U)

target = "((((((((((...))))((((....))))))))))"
model.add_constraints(rna.BPComp(i, j) AU, CG, · · ·

for (i, j) in rna.parse(target))

sampler = ir.Sampler(model)
samples = [sampler.sample() for _ in range(1000)]
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Modeling: Single structure design

import infrared as ir
import infrared.rna as rna

model = ir.Model(35, 4 0 : A 1 : C 2 : G 3 : U)

target = "((((((((((...))))((((....))))))))))"
model.add_constraints(rna.BPComp(i, j) AU, CG, · · ·

for (i, j) in rna.parse(target))

iupac_seq =
N : ACGU S : CG R : AG Y : CU

"SNNNNNNNNNRYYNNNNNNNNGNRANNNNNNNNNS"
for i, x in enumerate(iupac_seq):

model.add_constraints(
ir.ValueIn(i, rna.iupacvalues(x)))

sampler = ir.Sampler(model)
samples = [sampler.sample() for _ in range(1000)]
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Modeling: Single structure design

import infrared as ir
import infrared.rna as rna

model = ir.Model(35, 4 0 : A 1 : C 2 : G 3 : U)

target = "((((((((((...))))((((....))))))))))"
model.add_constraints(rna.BPComp(i, j) AU, CG, · · ·

for (i, j) in rna.parse(target))

iupac_seq =
N : ACGU S : CG R : AG Y : CU

"SNNNNNNNNNRYYNNNNNNNNGNRANNNNNNNNNS"
for i, x in enumerate(iupac_seq):

model.add_constraints(
ir.ValueIn(i, rna.iupacvalues(x)))

sampler = ir.Sampler(model)
samples = [sampler.sample() for _ in range(1000)]
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Control GC-content

α = −1

α = 0

α = +1

Method 1:

model.add_functions([rna.GCCont(i) CG : 1 AU : 0)
for i in range(n)], ’gc’)

model.set_feature_weight(α, ’gc’)

sampler = ir.Sampler(model)
samples = [sampler.sample() for _ in range(1000)]

Method 2 (Targeted sampling):
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Control GC-content

α = −1

α = 0

α = +1

Method 1:

model.add_functions([rna.GCCont(i) CG : 1 AU : 0)
for i in range(n)], ’gc’)

model.set_feature_weight(α, ’gc’)

sampler = ir.Sampler(model)
samples = [sampler.sample() for _ in range(1000)]

Method 2 (Targeted sampling):

sampler = ir.Sampler(model)
sampler.set_target( 0.75 * n, 0.01 * n, ’gc’ )
samples = [sampler.targeted_sample()

Automatically learn αfor _ in range(1000)]
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Multitarget design

1

10

20

30

40

50

60

70

80

90

100

1

10

20

30

40

50

60

70

80

90

100

1

10

20

30

40
50

60

70

80

90

100

t1 t2 t3

uniform targeted

model = ir.Model(n,4)

for k, target in enumerate(targets):
bps = rna.parse(target)
model.add_constraints(rna.BPComp(i, j)

for (i, j) in bps)

sampler.set_target( -40, 0.5, ’E1’)
sampler.set_target( -40, 0.5, ’E2’)
sampler.set_target( -30, 0.5, ’E3’)
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Multidimensional Boltzmann sampling

1

10

20

30

40

50

60

70

80

90

100

1

10

20

30

40

50

60

70

80

90

100

1

10

20

30

40
50

60

70

80

90

100

t1 t2 t3

uniform

targeted

model = ir.Model(n,4)

for k, target in enumerate(targets):
bps = rna.parse(target)
model.add_constraints(rna.BPComp(i, j)

for (i, j) in bps)

model.add_functions([rna.BPEnergy(i, j)

Simplified energy model

for (i, j) in bps], f’energy{k}’)

for k, target in enumerate(targets):
model.add_feature(f’E{k+1}’, f’energy{k}’,

lambda sample, target=target:
energy_of_struct

ViennaRNA energy model

(sample, target))

sampler = ir.Sampler(model)

sampler.set_target( -40, 0.5, ’E1’)
sampler.set_target( -40, 0.5, ’E2’)
sampler.set_target( -30, 0.5, ’E3’)
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Multidimensional Boltzmann sampling

1

10

20

30

40

50

60

70

80

90

100

1

10

20

30

40

50

60

70

80

90

100

1

10

20

30

40
50

60

70

80

90

100

t1 t2 t3

uniform targeted

model = ir.Model(n,4)

for k, target in enumerate(targets):
bps = rna.parse(target)
model.add_constraints(rna.BPComp(i, j)

for (i, j) in bps)

model.add_functions([rna.BPEnergy(i, j)

Simplified energy model

for (i, j) in bps], f’energy{k}’)

for k, target in enumerate(targets):
model.add_feature(f’E{k+1}’, f’energy{k}’,

lambda sample, target=target:
energy_of_struct

ViennaRNA energy model

(sample, target))

sampler = ir.Sampler(model)

sampler.set_target( -40, 0.5, ’E1’)
sampler.set_target( -40, 0.5, ’E2’)
sampler.set_target( -30, 0.5, ’E3’)
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Fixed-parameter tractable sampling in Infrared

Recipe:

1. Tree-Decompose dependency graph

2. Apply dynamic programming ↑ (partition functions)

3. Sample ↓ (stochastic traceback)

1 2 3 4 5 6 7

( ( . . ) ) .
. ( ( ( ) ) )
. ( ( . ) ) .

target structures

1

6

2

57

3 4

b35
b45b72

b36 b25

b26
b16

dependency graph

3 5

5 3
2

4 5

3 6
2

2 7

1 6

3

b16

b26
b27

b36

b25
b45

b35

tree decomposition

Theorem: Design sampling is efficient for fixed tree width w : O(n k 4w+1 + t n k)
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Fixed-parameter tractable sampling in Infrared

Recipe:

1. Tree-Decompose dependency graph

2. Apply dynamic programming ↑ (partition functions)

3. Sample ↓ (stochastic traceback)

1 2 3 4 5 6 7

( ( . . ) ) .
. ( ( ( ) ) )
. ( ( . ) ) .

target structures

1

6

2

57

3 4

b35
b45b72

b36 b25

b26
b16

dependency graph

3 5

5 3
2

4 5

3 6
2

2 7

1 6

3

b16

b26
b27

b36

b25
b45

b35

c6

c2

c5

c2

c6

c5

c23

c23

c35

c35

c3

c3

tree decomposition

Theorem: Design sampling is efficient for fixed tree width w : O(n k 4w+1 + t n k)
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Fixed-parameter tractable sampling in Infrared

Recipe:

1. Tree-Decompose dependency graph

2. Apply dynamic programming ↑ (partition functions)

3. Sample ↓ (stochastic traceback)

1 2 3 4 5 6 7

( ( . . ) ) .
. ( ( ( ) ) )
. ( ( . ) ) .

target structures

1

6

2

57

3 4

b35
b45b72

b36 b25

b26
b16

dependency graph

3 5

5 3
2

4 5

3 6
2

2 7

1 6

3

b16

b26
b27

b36

b25
b45

b35

c6

c2

c5

c2

c6

c5

c23

c23

c35

c35

c3

c3

sel 5

sel 3

sel 4
sel 2

sel 7sel 6

sel 1

tree decomposition

Theorem: Design sampling is efficient for fixed tree width w : O(n k 4w+1 + t n k)
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Look back at positive design by Infrared
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RNA structure design: positive and negative

Positive design: Target a structure

→ optimize affinity to target structures t

find sequence σ
with E (σ, t) = minσ′(σ′, t)

extensions: multiple targets, properties, . . .

Negative design: Avoid all off-targets

→ specificity for targets

find design σ, s.t.
E (σ, t) = mint′ E (σ, t

′) =: MFE (σ)

refined objectives: probability, ensemble, . . .

G

A
C

C

C

G

C

G

G

G

G
G

U
G A

A

C

C

C

C G
C

C

G
A G

G
G

C
G A

U

G
GG

C
C

G
AA

G
G

A

U
CG

G

G

C

G

1

50

GA

C

C

CGCGGGG
GU

G

A
A C C C C G C

C G
A

G

G

G
C

G A
U

G

G G
C

C
G

A A

G

G
A

U
C

G
GG

C
G

1

50-23.8

-18.8
C

G
G

C

A

U

C

G

G

C

U
C

G
U U

U

A

G

C

C U
C

C

G
A A

A
C

G
A A

G

U
AC

G
U

G
AA

G
G

C

A
UU

G

C

A

G

1

50

-8.2

but no negative design, since 

good positive design 

negative design
(by MFE criterion)

since all other structures 
energetically worse, e.g.

C

G

G

C
A

U
C G

G

C

U C
G

U

U
U A

G
C

C
U

C
C G

A
A

A
C

G A
A

G
UA

C
G

U
GA

A
G

G
C

A
UU

G
C

A
G

1

50

-7.8
C

G
G

C

A

U

C
G

G

C

U

C

G
U

U

U

A

G

C

C
U C

C

G
A A

A
C

G
A A

G

U
AC

G
U

G
AA

G
G

CA
UU

G

C

A

G

1

50

-6.6

since all/most other sequences 
energetically worse

.…
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Avoiding off-targets: negative design as optimization

minimize objective function over all sequences σ w.r.t. a target structure t

• MFE defect: base pair distance of MFE structure of σ and t,

DMFE (σ) = d(MFE (σ), t)

where base pair distance d(s, t) :=
∑

(i ,j )̸∈s,(i ,j)∈t 1 +
∑

(i ,j)∈s,(i ,j) ̸∈t 1

Ex.: dbp

(
(((...).).),
((.(...)).)

)
= 2

• probability defect: DPr (σ) = 1− Pr[t | σ]
maximize probability of the target t in the ensemble of σ

• ensemble defect: expected distance of ensemble structures s of σ to the target t

Dens(σ) =
∑

Pr[s | σ]d(s, t) =
∑

1≤i<j≤n,(i ,j)∈t

1− pij +
∑

1≤i<j≤n,(i ,j) ̸∈t

pij
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Avoiding off-targets: negative design as optimization

minimize objective function over all sequences σ w.r.t. a target structure t

• MFE defect: base pair distance of MFE structure of σ and t,

DMFE (σ) = d(MFE (σ), t)

where base pair distance d(s, t) :=
∑

(i ,j )̸∈s,(i ,j)∈t 1 +
∑

(i ,j)∈s,(i ,j) ̸∈t 1

Ex.: dbp

(
(((...).).),
((.(...)).)

)
= 2

• probability defect: DPr (σ) = 1− Pr[t | σ]
maximize probability of the target t in the ensemble of σ

• ensemble defect: expected distance of ensemble structures s of σ to the target t

Dens(σ) =
∑

Pr[s | σ]d(s, t) =
∑

1≤i<j≤n,(i ,j)∈t

1− pij +
∑

1≤i<j≤n,(i ,j) ̸∈t

pij
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Avoiding off-targets: negative design as optimization

minimize objective function over all sequences σ w.r.t. a target structure t

• MFE defect: base pair distance of MFE structure of σ and t,

DMFE (σ) = d(MFE (σ), t)

where base pair distance d(s, t) :=
∑

(i ,j )̸∈s,(i ,j)∈t 1 +
∑

(i ,j)∈s,(i ,j) ̸∈t 1

Ex.: dbp

(
(((...).).),
((.(...)).)

)
= 2

• probability defect: DPr (σ) = 1− Pr[t | σ]
maximize probability of the target t in the ensemble of σ

this does not consider whether the probable structures are close to target

• ensemble defect: expected distance of ensemble structures s of σ to the target t

Dens(σ) =
∑

Pr[s | σ]d(s, t) =
∑

1≤i<j≤n,(i ,j)∈t

1− pij +
∑

1≤i<j≤n,(i ,j) ̸∈t

pij
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Avoiding off-targets: negative design as optimization

minimize objective function over all sequences σ w.r.t. a target structure t

• MFE defect: base pair distance of MFE structure of σ and t,

DMFE (σ) = d(MFE (σ), t)

where base pair distance d(s, t) :=
∑

(i ,j )̸∈s,(i ,j)∈t 1 +
∑

(i ,j)∈s,(i ,j) ̸∈t 1

Ex.: dbp

(
(((...).).),
((.(...)).)

)
= 2

• probability defect: DPr (σ) = 1− Pr[t | σ]
maximize probability of the target t in the ensemble of σ

• ensemble defect: expected distance of ensemble structures s of σ to the target t

Dens(σ) =
∑

Pr[s | σ]d(s, t) =
∑

1≤i<j≤n,(i ,j)∈t

1− pij +
∑

1≤i<j≤n,(i ,j) ̸∈t

pij
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Algorithms for negative design: Stochastic Optimization

D

best sequence

rugged landscape, local optima

random starts; neighbors, mutations

Hill Climbing

for i in range(steps):
x = random_mutate(seq)
if D(x) < D(seq):

seq = x
return seq

Metropolis-Hastings MC Algorithm

best = seq
for i in range(steps):

x = random_mutate(seq)
if D(x) < D(seq) or

random()<=exp((D(x)-D(seq))/T)
seq = x
if D(seq)<D(best): best=seq

return best

SA, Replica exchange, Genetic algos, ...



AM
IB
io
·
R
N
A

D
es
ig
n
·
S
.
W

il
l
·
2
4

Algorithms for negative design: Stochastic Optimization

D

best sequence

rugged landscape, local optima

random starts; neighbors, mutations

Hill Climbing

for i in range(steps):
x = random_mutate(seq)
if D(x) < D(seq):

seq = x
return seq

Metropolis-Hastings MC Algorithm

best = seq
for i in range(steps):

x = random_mutate(seq)
if D(x) < D(seq) or

random()<=exp((D(x)-D(seq))/T)
seq = x
if D(seq)<D(best): best=seq

return best

SA, Replica exchange, Genetic algos, ...
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Algorithms for negative design: Stochastic Optimization

D

best sequence

rugged landscape, local optima

random starts; neighbors, mutations

Hill Climbing

for i in range(steps):
x = random_mutate(seq)
if D(x) < D(seq):

seq = x
return seq

Metropolis-Hastings MC Algorithm

best = seq
for i in range(steps):

x = random_mutate(seq)
if D(x) < D(seq) or
random()<=exp((D(x)-D(seq))/T)

seq = x
if D(seq)<D(best): best=seq

return best

Control acceptance of worse neighbors by T
(MCMC, Boltzmann distribution)

SA, Replica exchange, Genetic algos, ...
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Algorithms for negative design: Stochastic Optimization

D

best sequence

rugged landscape, local optima

random starts; neighbors, mutations

Hill Climbing

for i in range(steps):
x = random_mutate(seq)
if D(x) < D(seq):

seq = x
return seq

Metropolis-Hastings MC Algorithm

best = seq
for i in range(steps):

x = random_mutate(seq)
if D(x) < D(seq) or
random()<=exp((D(x)-D(seq))/T)

seq = x
if D(seq)<D(best): best=seq

return best

SA, Replica exchange, Genetic algos, ...
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

[Ivo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

[Ivo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

[Ivo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

((((((((((...))))((((....))))))))))
???????????????????????????????????

[Ivo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

((((((((((...))))((((....))))))))))
??????CGGCAAAGCCG??????????????????

[Ivo Hofacker et al., 1994]



AM
IB
io
·
R
N
A

D
es
ig
n
·
S
.
W

il
l
·
2
5

RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

((((((((((...))))((((....))))))))))
??????CGGCAAAGCCGGGCCAAUUGGCC??????

[Ivo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

((((((((((...))))((((....))))))))))
??????CGGCAAAGCCGGGCCUUUUGGCC??????

[Ivo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

((((((((((...))))((((....))))))))))
??????CGGCAAAGCCGGGCCAAAUGGCC??????

[Ivo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

• Optimizes MFE defect or probability defect

• Try random start sequences and optimize by Hill climbing

needs many evaluations of objective expensive?

• for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

For global optima, subsequence designs must be optimal!

converse?? why does this still work well?

RNAinverse still remarkably competitive (using good starting sequences) [Boury et al., 2024]

[Ivo Hofacker et al., 1994]
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Beyond single targets: objectives for multi-target design

1 2 3
01234567890123456789012345678901234

t1 = ((((((((((...))))((((....))))))))))
t2 = ((((((.((((((((....))))..))))))))))
t3 = .((((((...)))))).(((((((....)))))))
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• “Multi-defect” for targets t1, . . . tm [Hammer et al., “RNA Blueprint” 2017]

Dmulti (σ) =


1
m

∑
1≤ℓ≤m

E (σ, tℓ)− G (σ) (dominate ensemble)

+ ξ 1
2(m2)

∑
1≤k<ℓ≤m

|E (σ, tk)− E (σ, tℓ)| (similar energies)

• Aim for ensemble dominance with certain energy differences of targets..., e.g.

Dex(σ) = |E (σ, t1)− G (σ)|+ |E (σ, t2)− E (σ, t1)− 3|+ |E (σ, t3)− E (σ, t1)− 4|

G (σ) = −RT lnZ (σ) “ensemble energy”
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Beyond single targets: objectives for multi-target design

1 2 3
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• “Multi-defect” for targets t1, . . . tm [Hammer et al., “RNA Blueprint” 2017]

Dmulti (σ) =


1
m

∑
1≤ℓ≤m

E (σ, tℓ)− G (σ) (dominate ensemble)

+ ξ 1
2(m2)

∑
1≤k<ℓ≤m

|E (σ, tk)− E (σ, tℓ)| (similar energies)

• Aim for ensemble dominance with certain energy differences of targets..., e.g.

Dex(σ) = |E (σ, t1)− G (σ)|+ |E (σ, t2)− E (σ, t1)− 3|+ |E (σ, t3)− E (σ, t1)− 4|

G (σ) = −RT lnZ (σ) “ensemble energy”
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Stochastic optimization in Infrared

How to find valid neighbors in complex design problems?

1 2 3
01234567890123456789012345678901234
((((((((((...))))((((....))))))))))
((((((.((((((((....))))..))))))))))
.((((((...)))))).(((((((....)))))))
GCGUGCGGGGGAGUCUCUCCGUCAAUGGGGCACGC

• resample connected components (of dependency graph)
Idea: independence of cc preserves all other constraints

• sample neighbors in a targeted distance
Idea: • extend model by distance function

• sample neighbors, controlled by distance to current sequence
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Stochastic optimization in Infrared

How to find valid neighbors in complex design problems?
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• resample connected components (of dependency graph)
Idea: independence of cc preserves all other constraints

• sample neighbors in a targeted distance
Idea: • extend model by distance function

• sample neighbors, controlled by distance to current sequence
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Stochastic optimization in Infrared

How to find valid neighbors in complex design problems?

1 2 3
01234567890123456789012345678901234
((((((((((...))))((((....))))))))))
((((((.((((((((....))))..))))))))))
.((((((...)))))).(((((((....)))))))
GCGUGCGGGGGAGUCUCUCCGUCAAUGGGGCACGC
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• resample connected components (of dependency graph)
Idea: independence of cc preserves all other constraints

• sample neighbors in a targeted distance
Idea: • extend model by distance function

• sample neighbors, controlled by distance to current sequence
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Learning design from evolution (Generative Models)

General idea: learn from homology information / MSAs

There is information in MSA beyond position-wise frequencies! ⇒ covariation...

⇒ Restricted Boltzmann Machines (RBM)

• (bipartite) two layer neural networks

• can be trained to evaluate sequences

• shown to design SAM aptamer
[FdCD et al., 2023]

E (v,h)

[Jorge Fernandez-de-Cossio-Diaz, 2024]
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Restricted Boltzmann Machines (RBMs)

vµ: A,C,G,U,-
hi : dependencies

Eeff (v) ← marginalization

PCD, Gibbs sampler

• Effective training: maximize log likelihood of training data by persistent contrastive
divergence (PDC) [Hinton, 2012] • Evaluation of designs • Positive design / sampling

[Jorge Fernandez-de-Cossio-Diaz, 2024]
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Hands on session

BoundUnbound

• Use of Infrared

• Design of SAM-I aptamer

• Design of SAM-I on-switch (simplified)

• Sample and optimize

• Integrate homology and
thermodynamic info

• Integrate evaluation by RBM


