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Structure design as “inverse folding”

More generally: Generating RNA sequences with desired functions

— biotechnology, RNA-based therapies, mRNA vaccines. . .
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Complex RNA design

Design riboswitches for gene control
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Complex RNA design

Design riboswitches for gene control

AND gate
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Complex RNA design

Design riboswitches for gene control

Complex constructs: AND-Riboswitch (with G. Domin et al., 2017)
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AND gate

Challenge: Design for multiple target structures
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Design of xrRNA riboswitch

PK 2

PK 1

xrRNA

with
ligand

without
ﬂ ﬂ J ligand
5' DS 3'

[Leonhard Sidl, MT Wolfinger, HT Yao...]
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Design of SAM-I aptamer

Aim for similarity with MSA
® Learn generative model from MSA (RBM)
Compatibility with target structure (with PKs)

Avoid off-targets
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Design of SAM-I riboswitch

ON state OFF state

In absence of SAM, ¢ In presence of SAM,

downstream gene is e downstream gene is
transcribed not transcribed

Rho-independent
terminator
Downstream mRNA

[Jorge Fernandez-de-Cossio-Diaz, 2024]

Generation (Sampling): Refinement (Stochastic optimization):
® targets: compatibility, energy ® avoid off-targets
® sequence similiarity e relative stability bound/unbound
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RNA structure design:

Positive design: Target a structure

— optimize affinity to target structures t

find sequence o
with E(o, t) = min,/ (o', t)

extensions: multiple targets, properties, ...

e
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&% g00d positive design
since all/most other sequences
@.@ “.18.8
&

energetically worse
but no negative design, since
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positive and negative

Negative design: Avoid all off-targets

— specificity for targets
find design o, s.t.

E(o,t) = ming E(o,t') =: MFE(0)

refined objectives: probability, ensemble, ...

@ negatlve design
(by MFE criterion)

since all other structures
energetically worse, e.g.

gt f%%fﬁ
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Hello world of positive design!
(single target structure, base pair energy)

IN: target structure t of length n
“base pair energy” E(Jv t) = Z(i,j)et ebP(Uf7 Uj) =+ Zi unpaired in t eu(J,')
Task: sample from the Boltzmann distribution of sequences; i.e. sample o with probability

Prlo] ~ exp(—BE (o, t)) for some inverse temperature /3
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Hello world of positive design!
(single target structure, base pair energy)

IN: target structure t of length n
“base pair energy” E(Jv t) = Z(i,j)et ebP(Uf7 Uj) + Zi unpaired in t eU(Ji)
Task: sample from the Boltzmann distribution of sequences; i.e. sample o with probability

Prlo] ~ exp(—BE (o, t)) for some inverse temperature /3

Observation: bases and base pairs can be generated independently of each other!
Algorithm
1) for each unpaired i: choose o; with Pr[o;] ~ exp(—LBey(o}))

2) for each pair (i, j) € t: choose o and g; with Pr[o;,o;] ~ exp(—Bepp(0i, o}))
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Hello world of positive design!
(single target structure, base pair energy)

IN: target structure t of length n
“base pair energy” E(Jv t) = Z(i,j)et ebP(Uf7 Uj) + Zi unpaired in t eU(Ji)
Task: sample from the Boltzmann distribution of sequences; i.e. sample o with probability

Prlo] ~ exp(—BE (o, t)) for some inverse temperature /3

Observation: bases and base pairs can be generated independently of each other!

Algorithm

1) for each unpaired i: choose o; with Pr[o;] ~ exp(—LBey(o}))

2) for each pair (i, j) € t: choose o and g; with Pr[o;,o;] ~ exp(—Bepp(0i, o}))

@ What happens for complex energy models or multiple targets? (dependencies!)
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Infrared

General efficient framework for weighted constraint solving.
= Rapid development of bioinformatics tools (including design)

A=~

w

Functions: GC%, E;, E,, Es

Infrared solves a weighted form of constraint problems (CSP — Feature Networks)

It allows us to describe (“model”) problems; then solves them automatically.
[Hua-Ting Yao et al., 2024]
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Infrared

General efficient framework for weighted constraint solving.
= Rapid development of bioinformatics tools (including design)

Input Sampling
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Infrared solves a weighted form of constraint problems (CSP — Feature Networks)

It allows us to describe (“model”) problems; then solves them automatically.
[Hua-Ting Yao et al., 2024]
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Infrared

General efficient framework for weighted constraint solving.
= Rapid development of bioinformatics tools (including design)

Input Sampling
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Positive Design

Infrared solves a weighted form of constraint problems (CSP — Feature Networks)

It allows us to describe (“model”) problems; then solves them automatically.
[Hua-Ting Yao et al., 2024]
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Constraint Satisfaction Problems (CSPs)

Definition: A CSP is a tuple (X,D,C), where
® X ={Xi,...,Xp} is a set of variables
® D={D,...,D,} is a set of corresponding finite domains

® C is a finite set of constraints

Each constraint C is associated with k variables.

Solutions of a CSP are assignments of domain values to the variables that satisfy all
constraints (valid assignments).
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Constraint Satisfaction Problems (CSPs)

Definition: A CSP is a tuple (X,D,C), where
® X ={Xi,...,Xp} is a set of variables
® D={D,...,D,} is a set of corresponding finite domains

® C is a finite set of constraints

Each constraint C is associated with k variables.

Solutions of a CSP are assignments of domain values to the variables that satisfy all
constraints (valid assignments).

@ General solving is NP-hard! Solving strategies?

® Generic, heuristic solving strategies: backtracking search + constraint propagation

® . . Infrared is specialized to problems with nearly tree-like dependencies
we gain: efficient (fpt) exact optimization + controlled sampling!
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CSP Examples: Graph Coloring and N-Queens

A vi V2 — V3 B vi V2 — 3
Vs —— Vg V4 Vs —— Vg
Vi — 8 Vi — W8 Vo

Constraints: Adjacent nodes differ in color!
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CSP Examples: Graph Coloring and N-Queens

A vi V2 — V3 B vi V2 — 3
Vs —— V6 V4 Vs — V6
Vi — 8 Vi — W8 Vo

Constraints: Adjacent nodes differ in color!
CSP = (X,D,C)

o X =1{X,..., X}

e D={X;—[1.4],...,Xe — [1..4]}

® C={Xi# X;|i,jadjacent}
model = Model (9, (1,4))

model.add_constraints(
NotEquals (i, j) for i, j in edges)
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CSP Examples: Graph Coloring and N-Queens

A v Vo — v3 B v Vo2 — v3
Vs —— Vo Va4 Vs —— V6
vi — v Vi — v )

Constraints: Adjacent nodes differ in color!
CSP = (X,D,C)

o X =1{X,..., X}

e D={X;—[1.4],...,Xe — [1..4]}

® C={Xi# X;|i,jadjacent}
model = Model (9, (1,4))

model.add_constraints(
NotEquals (i, j) for i, j in edges)

Constraints:

X1=3
Xo=1
X3=4
X4 =2

no attacks! ﬁ
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CSP Examples: Graph Coloring and N-Queens

A Vi 2 — v3 B Vi Vo2 —— V3
‘ ‘ ‘ ‘ r _
V5 — V6 Vs —— Vg II -
/ ‘ >< ‘ / ‘ >< ‘ Constraints: no attacks!
vi — v Vi — v
Constraints: Adjacent nodes differ in color! CSP = (X,D,C)
CSP:(X,D,C) L4 X:{Xl,...,X4}
L4 X:{Xl,...,Xg} L4 DZ{X1D—>[1..4],...,X4l—>[1..4]}
'DZ{Xl’—)[1..4],..‘7X4i—)[1..4]} ‘C:{X,#X,|1§I<JS4}
- UXi+i#X+j1<i<j<4}
® C={Xi# X;|i,jadjacent} U{Xi— i £ X —j|1<i<j<a}

model = Model (9, (1,4))
model.add_constraints(
NotEquals (i, j) for i, j in edges)

model = Model (4, (1,4))
model.add_constraints (NotEquals (i, Jj)

for i in range(4) for j in range(i+1,4))
model.add_constraint ( ...
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Dependency graph and tree decomposition

V2 — v3 V2 — V3

V57V6 V57V6

model = Model (9, (1,4))

edges = [(1,5), (2,3), (2,5), ... ]

model.add_constraints (NotEquals (i, j)
for i,j in edges)
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Dependency graph and tree decomposition

V2 — v3 B Vi V2 — V3
V5 — V5 V4>(V5 — V5
v7 £} Vo

model = Model (9, (1,4))

edges = [(1,5), (2,3), (2,5), ... ]

model.add_constraints (NotEquals (i, j)
for i, 3 in edges)

56
89

(=) oD

Dlolo

Tree decomposition (T, x); T = (V, E):
1. every variable occurs in one bag v € V

2. for every constraint and function: there is
one bag that contains its variables

3. for each variable: the bags containing it are
connected

Tree width = size of largest bag - 1

Remarks:
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Dependency graph and tree decomposition

V2 — v3 V2 — V3

V57V6 V57V5

model Model (9, (1,4))

edges = [(1,5), (2,3), (2,5), ... ]

model.add_constraints (NotEquals (i, j)
for i, 3 in edges)

()
(5 GO
Dlolo

Tree decomposition (T, x);
1.
2.

T=(V,E):
every variable occurs in one bag v € V

for every constraint and function: there is
one bag that contains its variables

for each variable: the bags containing it are
connected

Tree width = size of largest bag - 1

Remarks:

® Conditions 1-3 allow solving by dynamic

programming (solve from smaller to
larger subtrees)

® Condition 2 — every constraint and

function can be processed in some bag

+ RNA Design - S. Will - 13



Adding functions — Objective function

Make it more interesting by adding some functions

V2 — V3 V2 — V3

57V6 57V6

/

/

model = Model (9, (1,4))
model.add_constraints (NotEquals (i, j)
for i,j in edges)

# extend by card feature
model.add_functions ([Card (i, j,k,1)
for i,7j,k,1 in fourcycles],’card’)

- RNA Design - S. Will - 14
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Feature Networks

Feature networks add quality of solutions — features.
Definition
A Feature Network is a tuple N' = (X, D,C, F), where
® X ={Xy,...,X,} is a set of variables
® D={D,...,D,} is a set of corresponding finite domains
® (C is a finite set of constraints

e F is a finite set of features, which consist of feature functions

Features . ..
® evaluate assignments as F(x) = > ¢ r f(x)
® define the evaluation function Ep(x,a) =) pcrapF(x)

for weights af

+ RNA Design - S. Will - 15



Infrared solves the sampling problem

Problem (Assignment sampling)

INPUT: Feature Network N, feature weights

OutpuT: Valid assignment x € Ay generated with a probability that is proportional
to its Boltzmann weight

P(x) o exp (En(x,)) .

a = (af)fer vector of weights

Evaluation function: Ex(x,a) = Z apF(x
FeF

+ RNA Design - S. Will - 16



Modeling:

0:A 1.C 22G 3:U

Single structure design

import infrared as ir
import infrared.rna as rna

model = ir.Model (35, 4)0:A 1:C 2:G 3:U
target = " ((((CCCCCCCo)))) (CCCaea D))"

model.add_constraints (rna.BPComp (i, J) Ay cq. ...
for (i, j) in rna.parse(target))

sampler = ir.Sampler (model)

samples = [sampler.sample() for in range (1000)]

+ RNA Design - S. Will - 17
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Modeling: Single structure design

import infrared as ir
import infrared.rna as rna

model = ir.Model (35, 4)0:A 1:C 2:G 3:U

target = "((CCCCCCCCo.)))) CCCCaaa))))))) )"
model.add_constraints (rna.BPComp (i, 7J) AU, CG, - - -
for (i, j) in rna.parse(target))

N:ACGU S:CG R:AG Y:CU
iupac_seq = "SNNNNNNNNNRYYNNNNNNNNGNRANNNNNNNNNS"
for i, x in enumerate (iupac_seq) :
model.add_constraints (
ir.valueIn(i, rna.iupacvalues (x)))

sampler = ir.Sampler (model)
samples = [sampler.sample () for in range (1000) ]
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Modeling: Single structure design

import infrared as ir
import infrared.rna as rna

model = ir.Model (35, 4)0:A 1:C 2:G 3:U

target = "((CCCCCCCCo.)))) CCCCaaa))))))) )"
model.add_constraints (rna.BPComp (i, 7J) AU, CG, - - -
for (i, j) in rna.parse(target))

N:ACGU S:CG R:AG Y:CU
iupac_seq = "SNNNNNNNNNRYYNNNNNNNNGNRANNNNNNNNNS"
for i, x in enumerate (iupac_seq) :
model.add_constraints (
ir.valueIn(i, rna.iupacvalues (x)))

sampler = ir.Sampler (model)
samples = [sampler.sample () for in range (1000) ]
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Control GC-content

a=—1 Method 1:

nuun”nuﬂn nun""

model.add_functions ([rna.GCCont (1)) €& 1 AU:0
for i in range(n)], ’‘gc’)
model.set_feature_weight (&,

§§§§g

4

gc’)

sampler = ir.Sampler (model)

NEEEE

. I samples = [sampler.sample() for _ in range (1000)]

REER

- RNA Design - S. Will - 18
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Control GC-content

Method 1:

model.add_functions ([rna.GCCont (i)) €G:1 AU:0
for i in range(n)], ’'gc’)

a=-1

nnunllnunn unn""

§§§§§

L model.set_feature_weight (o, "gc’)
sampler = ir.Sampler (model)
samples = [sampler.sample() for _ in range(1000)]

NEEEE

Method 2 (Targeted sampling):

sampler = ir.Sampler (model)

sampler.set_target( 0.75  n, 0.01  n, 'gc’ )
samples = [sampler.targeted_sample ()

for _ in range(1000)]  aAytomatically learn a

-

REER

- RNA Design - S. Will - 18
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Multitarget design

model = ir.Model (n,4)

for k, target in enumerate (targets):
bps = rna.parse(target)
model.add_constraints (rna.BPComp (i, 7J)
for (i, Jj) in bps)
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Multidimensional Boltzmann sampling

model = ir.Model (n,4)

for k, target in enumerate (targets):
bps = rna.parse(target)
model.add_constraints (rna.BPComp (i, 7J)
for (i, j) in bps)
Simplified energy model
model.add_functions ([rna.BPEnergy (i, Jj)
for (i, j) in bps], f’energy{k}’)

for k, target in enumerate (targets):
model.add_feature(f’'E{k+1}’, f’energyi{k}’,
lambda sample, target=target:
. . . . . ' energy_of_struct (sample, target))

ViennaRNA energy model

sampler = ir.Sampler (model)

-40 -20 0 -40 -20 0 -40 -20 O

E1l E1 E2
uniform

- RNA Design - S. Will - 19
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Multidimensional Boltzmann sampling

-40 -20 0 -40 -20 0 -40 -20 O

El El E2

uniform targeted

model = ir.Model (n,4)

for k, target in enumerate (targets):
bps = rna.parse(target)
model.add_constraints (rna.BPComp (i, 7J)
for (i, j) in bps)
Simplified energy model
model.add_functions ([rna.BPEnergy (i, Jj)
for (i, j) in bps], f’energy{k}’)

for k, target in enumerate (targets):
model.add_feature(f’'E{k+1}’, f’energyi{k}’,
lambda sample, target=target:
energy_of_struct (sample, target))

ViennaRNA energy model

sampler = ir.Sampler (model)

sampler.set_target ( -40, 0.5, "E1’")
sampler.set_target ( -40, 0.5, "E2")
sampler.set_target ( -30, 0.5, "E3’")

- RNA Design - S. Will - 19
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Fixed-parameter tractable sampling in Infrared

Recipe:

1. Tree-Decompose dependency graph

2. Apply dynamic programming T (partition functions)

3. Sample |, (stochastic traceback)

12 3 4567
) .
) )
.

target structures

—_
—_

dependency graph

tree decomposition
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Fixed-parameter tractable sampling in Infrared

Recipe:

1. Tree-Decompose dependency graph

2. Apply dynamic programming T (partition functions)

3. Sample |, (stochastic traceback)

12 3 4567
) .
) )
.

target structures

—_
—_

dependency graph

tree decomposition
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Fixed-parameter tractable sampling in Infrared

Recipe:
1. Tree-Decompose dependency graph
2. Apply dynamic programming T (partition functions)
3. Sample |, (stochastic traceback)

1 2 3 4567
) .
) )
. -

target structures

—_
—_

dependency graph

tree decomposition

Theorem: Design sampling is efficient for fixed tree width w: O(nk4%*! + t nk)

+ RNA Design - S. Will - 20
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Look back at positive design by Infrared

(T ()

abcdefghijkImnopgrstuv

Functions: GC%, E,, E,, E;
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Dependency Graph
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Tree Decomposition
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Partition Function
Stochastic Backtrack

Sampling
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e E .
SR 50
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o 8w e s o

GCCGCGGUAGCUACAGCCGGCU
UUGGGGUUGGGUAGACUCCGGU
GCUGCAGCGGCUGUGGCUGGCC
GGUUCUGGUUUGCUUAGGGCUA
CGACGGCGGUGCCGGCAUUUGC

M

cal.mol ()
GC%

0 50 100

—— Optimization

Objective function

Positive Design

- 21
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RNA structure design:

Positive design: Target a structure

— optimize affinity to target structures t

find sequence o
with E(o, t) = min,/ (o', t)

extensions: multiple targets, properties, ...

©-®
© [}
@ o Z‘@.
&% g00d positive design
since all/most other sequences
@.@ “.18.8
&

energetically worse
but no negative design, since

@1@%@
238 2}%

e

positive and negative

Negative design: Avoid all off-targets

— specificity for targets
find design o, s.t.

E(o,t) = ming E(o,t') =: MFE(0)

refined objectives: probability, ensemble, ...

@ negatlve design
(by MFE criterion)

since all other structures
energetically worse, e.g.

gt f%%fﬁ

- RNA Design - S. Will - 22
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Avoiding off-targets: negative design as optimization
minimize objective function over all sequences o w.r.t. a target structure t
® MFE defect: base pair distance of MFE structure of o and t,
Dwyiee(o) = d(MFE(0), t)

where base pair distance d(s, t) := > (; iyas (i jyer 1+ 2o(ijes (ij)ge L

o ({()) -2
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Avoiding off-targets: negative design as optimization
minimize objective function over all sequences o w.r.t. a target structure t

® MFE defect: base pair distance of MFE structure of o and t,
Dwre(o) = d(MFE(0), t)

where base pair distance d(s, t) := > (; iyas (i jyer 1+ 2o(ijes (ij)ge L

o ({()) -2

® probability defect: Dp,(c) =1 — Pr[t | o]
maximize probability of the target t in the ensemble of o

il . RNA Design - 5. Will - 23



Avoiding off-targets: negative design as optimization
minimize objective function over all sequences ¢ w.r.t. a target structure t

® MFE defect: base pair distance of MFE structure of o and t,
DMFE(U) = d(MFE(O’), t)

where base pair distance d(s,t) := > jyas (ijyer L+ 2o(ijes (i)t L

s ()

® probability defect: Dp,(c) =1 — Pr[t | o]
maximize probability of the target t in the ensemble of o

\{}9) this does not consider whether the probable structures are close to target

il . RNA Design - 5. Will - 23



Avoiding off-targets: negative design as optimization
minimize objective function over all sequences o w.r.t. a target structure t

® MFE defect: base pair distance of MFE structure of o and t,
Dwre(o) = d(MFE(0), t)

where base pair distance d(s, t) := > (; iyas (i jyer 1+ 2o(ijes (ij)ge L

o ({()) -2

® probability defect: Dp,(c) =1 — Pr[t | o]
maximize probability of the target t in the ensemble of o

® ensemble defect: expected distance of ensemble structures s of ¢ to the target t

Dens(0) = Prls|old(s,t)= > 1-pi+ > py

1<i<j<n,(ij)et 1<i<j<n,(ij)¢t

il . RNA Design - 5. Will - 23



Algorithms for negative design: Stochastic Optimization

v best sequence

@ rugged landscape, local optima

£

@ random starts; neighbors, mutations

+ RNA Design - S. Will - 24
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Algorithms for negative design: Stochastic Optimization

Hill Climbing

for i in range(steps):
x = random_mutate (seq)
if D(x) < D(seq):
seq = X
return seqg

v best sequence

@ rugged landscape, local optima

/

@ random starts; neighbors, mutations

+ RNA Design - S. Will - 24
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Algorithms for negative design: Stochastic Optimization

Hill Climbing

for i in range(steps):
x = random_mutate (seq)
if D(x) < D(seq):
seq = x
return seq

Metropolis-Hastings MC Algorithm

best = seq
for i in range(steps):
v best sequence x = random_mutate (seq)

if D(x) < D(seq) or
N random () <=exp ( (D (x) -D (seq) ) /T)
) rugged landscape, local optima seq = x
if D (seq) <D (best): best=seq
return best

@9 random starts; neighbors, mutations

(MCMC, Boltzmann distribution)

Control acceptance of worse neighbors by T

+ RNA Design - S. Will - 24
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Algorithms for negative design: Stochastic Optimization

Hill Climbing

for i in range(steps):
x = random_mutate (seq)
if D(x) < D(seq):
seq = X
return seqg

Metropolis-Hastings MC Algorithm

best = seq
for i in range(steps):
v best sequence x = random_mutate (seq)

if D(x) < D(seq) or
random () <=exp ( (D (x) -D (seq)) /T)

@ rugged landscape, local optima seq = x
if D (seq) <D (best): best=seq
p return best

@ random starts; neighbors, mutations

SA, Replica exchange, Genetic algos, ...
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

® Optimizes MFE defect or probability defect

[lvo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package
® Optimizes MFE defect or probability defect
® Try random start sequences and optimize by Hill climbing
needs many evaluations of objective @ expensive?
e for MFE design, RNA-tailored strategy:

start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

(CCCCCCCCCCa)))) CCCCaev))) )N

A e e e R R e R e e e R R R A R R R R R A A Ar ]

[lvo Hofacker et al., 1994]
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avoid getting stuck; reduce folding of long sequences
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

® Optimizes MFE defect or probability defect
® Try random start sequences and optimize by Hill climbing

needs many evaluations of objective @ expensive?

e for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

(CCCCCCCCCCa)))) CCCCaee))))))))))

[lvo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

® Optimizes MFE defect or probability defect
® Try random start sequences and optimize by Hill climbing
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avoid getting stuck; reduce folding of long sequences
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

® Optimizes MFE defect or probability defect
® Try random start sequences and optimize by Hill climbing

needs many evaluations of objective @ expensive?

e for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

(CCCCCCCCCCa)))) CeCCaee))))))))))

[lvo Hofacker et al., 1994]
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RNAinverse - Classical RNA design

The single sequence design tool of the Vienna RNA package

® Optimizes MFE defect or probability defect
® Try random start sequences and optimize by Hill climbing

e

needs many evaluations of objective \9 expensive?

e for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

For global optima, subsequence designs must be optimal!

@ converse?? @ why does this still work well?

RNAinverse still remarkably competitive (using good starting sequences) [Boury et al., 2024]

[Ilvo Hofacker et al., 1994]
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Beyond single targets: objectives for multi-target design

1 2 3

01234567890123456789012345678901234 0 . £ O“é -

Y0 N R NN

tl o= (CCOCOCCCEC ) CCCCaaa ) MLV & 8e
2 = (CCCCC COCCCCCCaaaa)))) -)))))))0))) g‘ § BS
€3 = (OO0 () )) & j 4

e “Multi-defect” for targets t1,...t, [Hammer et al., "RNA Blueprint” 2017]

% > E(o,t;) — G(0) (dominate ensemble)
D (O’) N 1<t<m
Uil + Safy S |E(et)~ E(o.t)|  (similar energies)
2)  1<k<t<m

G(0) = —=RTIn Z(o) "ensemble energy”
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Beyond single targets: objectives for multi-target design

1 2 3
01234567890123456789012345678901234
£l = (CCCCCCCCCaaa)))) (C0Cavv))))))))))
2 = (CCCCC e Caeaa))))e))))))N))
€3 = L (CCCCC0)))))) - () ))))

e “Multi-defect” for targets t1,...t, [Hammer et al., "RNA Blueprint” 2017]

% > E(o,t;) — G(0) (dominate ensemble)
D (O’) N 1<t<m
Uil + Safy S |E(et)~ E(o.t)|  (similar energies)
2)  1<k<t<m

® Aim for ensemble dominance with certain energy differences of targets..., e.g.

Dex(0) = |E(o,t1) — G(0)| + |E(0, t2) — E(0, t1) — 3| + |E(0, t3) — E(0, t1) — 4

G(0) = —=RTIn Z(o) "ensemble energy”

+ RNA Design - S. Will - 26



Stochastic optimization in Infrared

@ How to find valid neighbors in complex design problems?

1 2 3
01234567890123456789012345678901234
(CCCCCCCCCe o)) )) (CCCaee))))))))))
COCCCC O CCaee ) e

SCCCCCCaa))) ) - CCCCCCCe ) ))))))
GCGUGCGGGGGAGUCUCUCCGUCAAUGGGGCACGC
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Stochastic optimization in Infrared

@ How to find valid neighbors in complex design problems?

1 2 3
01234567890123456789012345678901234
(CCCCCCCCCe o)) )) (CCCaee))))))))))
COCCCC O CCaee ) e

SCCCCCCaa))) ) - CCCCCCCe ) ))))))
GCGUGCGGGGGAGUCUCUCCGUCAAUGGGGCACGC

® resample connected components (of dependency graph)

Idea: independence of cc preserves all other constraints
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Stochastic optimization in Infrared

@ How to find valid neighbors in complex design problems?

1 2 3
01234567890123456789012345678901234
(CCCCCCCCCe o)) )) (CCCaee))))))))))
COCCCC O CCaee ) e

SCCCCCCaa))) ) - CCCCCCCe ) ))))))
GCGUGCGGGGGAGUCUCUCCGUCAAUGGGGCACGC

® resample connected components (of dependency graph)
Idea: independence of cc preserves all other constraints

® sample neighbors in a targeted distance

Idea: e extend model by distance function
e sample neighbors, controlled by distance to current sequence

il . RNA Design - 5. Will - 27



Learning design from evolution (Generative Models)

General idea: learn from homology information / MSAs

There is information in MSA beyond position-wise frequencies! = covariation...
= Restricted Boltzmann Machines (RBM) ' hidden layer
¢ (bipartite) two layer neural networks
® can be trained to evaluate sequences E(v,h)

® shown to design SAM aptamer
[FACD et al., 2023] visible layer
[Jorge Fernandez-de-Cossio-Diaz, 2024]
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Restricted Boltzmann Machines (RBMs)

hidden layer

v A, C,G,U, -
h;: dependencies

PIY) P HH)
Extract features Reconstruct data .
from data /v \ from features PCD' GIbbS sampler

visible layer
Full RBM Effective model
marginalization
of latent variables o ) ) ;
~N—_ 1 Eeff(V) — marglnallzatlon

visible units interact effective interactions

with hidden units between visible units

N M N M

E(v,h)= D V(i) + 30 Wb) =D D wiu(vi)hy

i=1 p=1 i=1pu=1

e Effective training: maximize log likelihood of training data by persistent contrastive
divergence (PDC) [Hinton, 2012] e Evaluation of designs e Positive design / sampling

[Jorge Fernandez-de-Cossio-Diaz, 2024]
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Hands on session
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