

Algorithms for RNA design

Sebastian Will

École Polytechnique - Institute Polytechnique de Paris

AlgoSB 2025

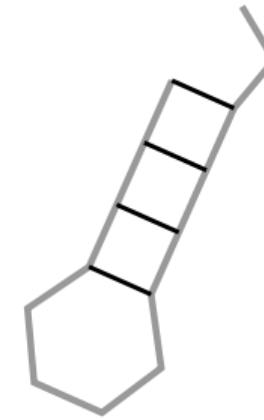
[Thanks to Hua-Ting Yao for a number of slides]

RNA Design

GAUCUCACGGUCAA

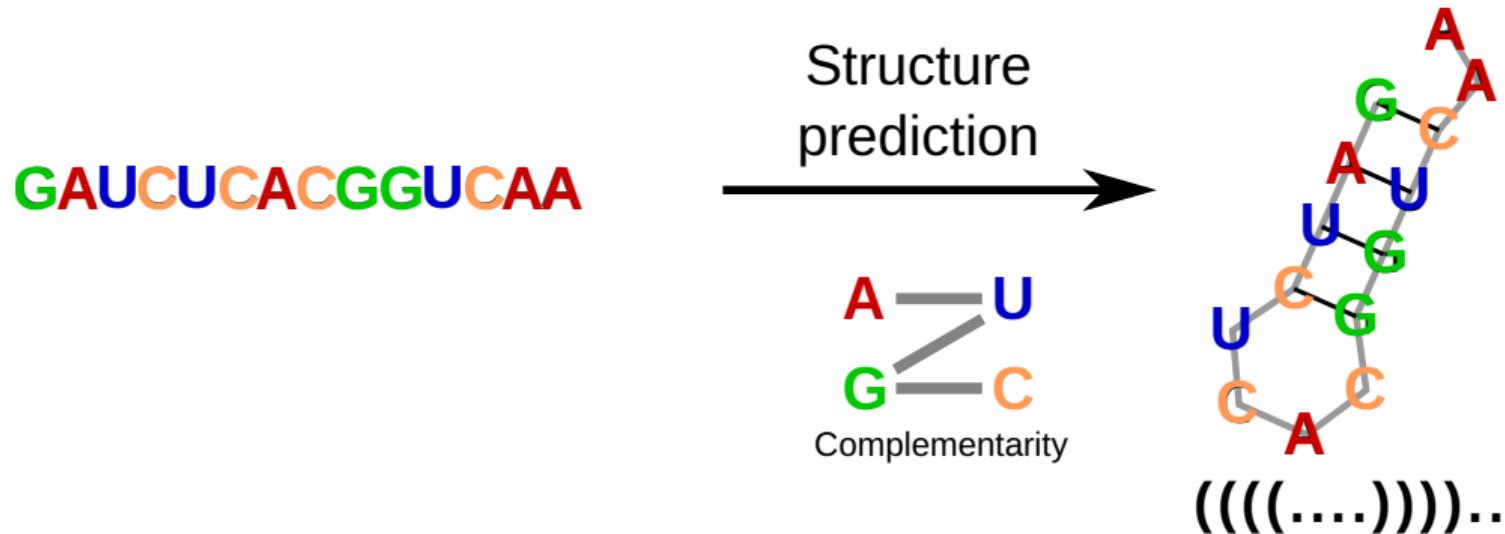
RNA Design

Complementarity



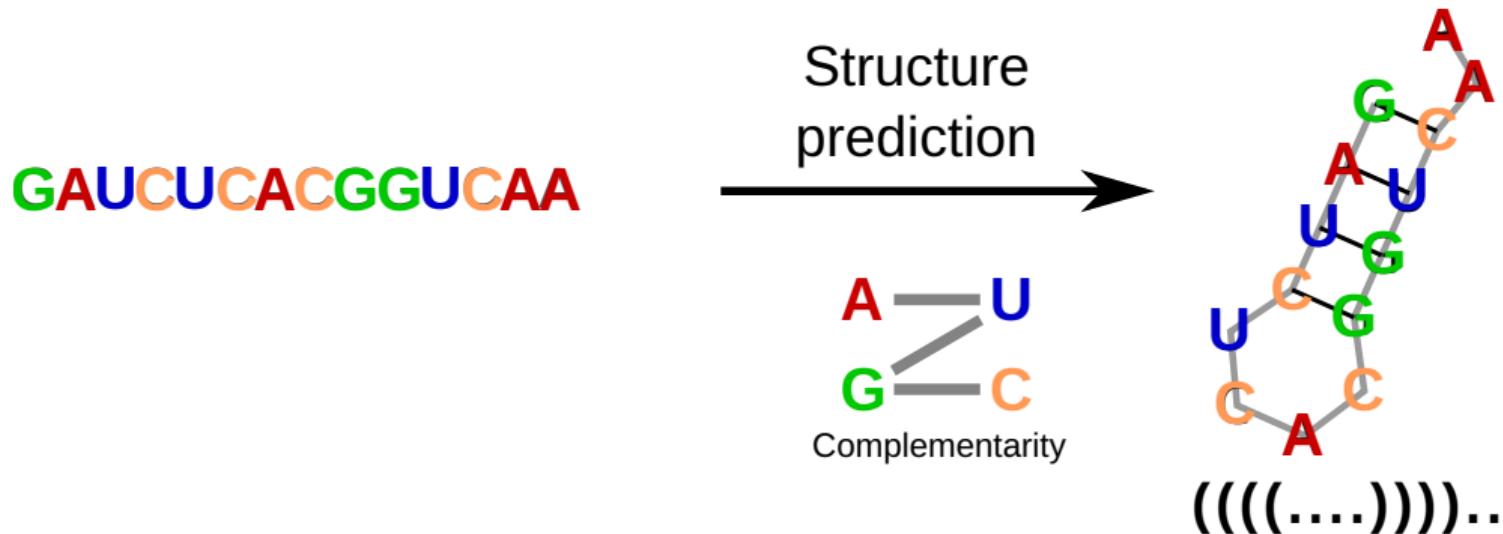
((((....))))..

RNA Design



Structure design as “inverse folding”

RNA Design



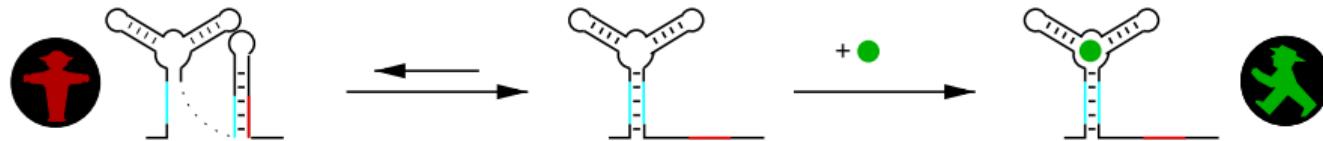
Structure design as “inverse folding”

More generally: Generating RNA sequences with desired functions

→ biotechnology, RNA-based therapies, mRNA vaccines...

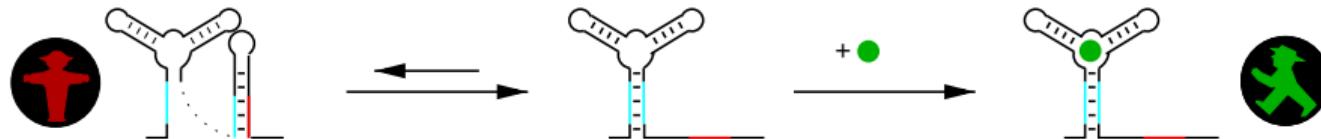
Complex RNA design

Design riboswitches for gene control

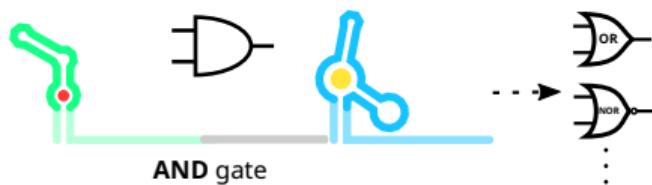


Complex RNA design

Design riboswitches for gene control

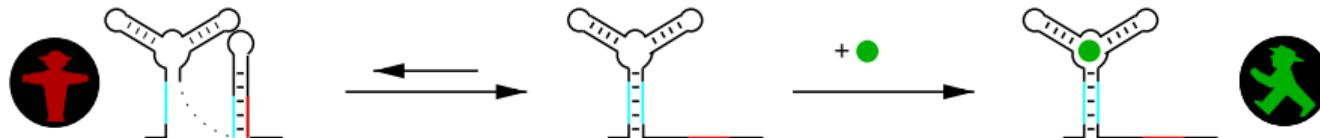


Complex constructs: **AND-Riboswitch** (with G. Domin *et al.*, 2017)

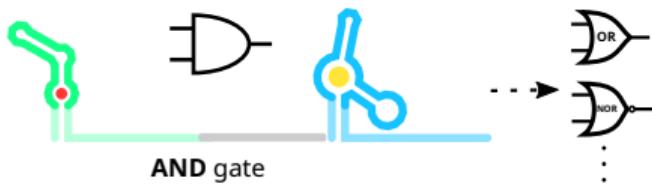


Complex RNA design

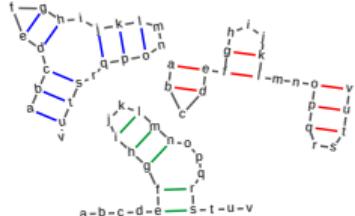
Design riboswitches for gene control



Complex constructs: **AND-Riboswitch** (with G. Domin *et al.*, 2017)

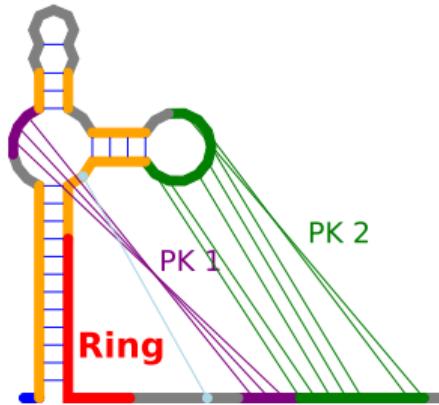
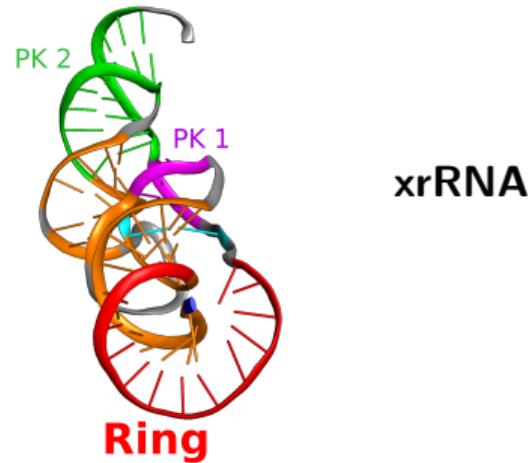
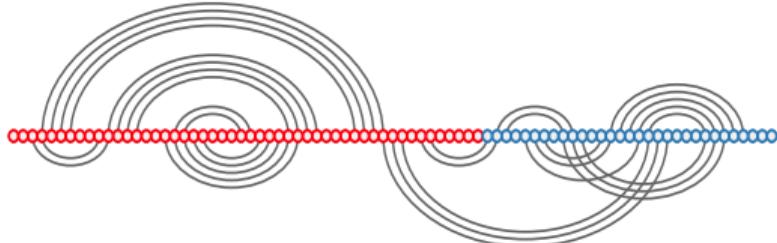


Challenge: **Design for multiple target structures**



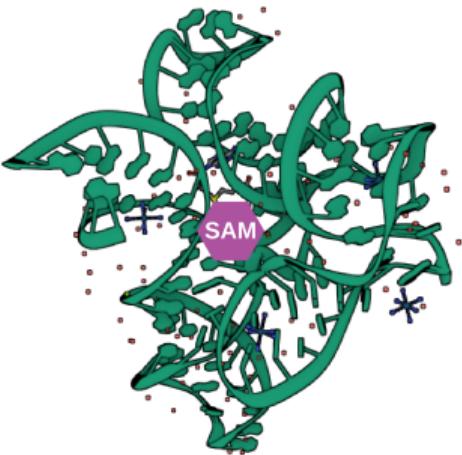
abcdefghijklmнопqrstuvwxyz
(((((.)).(((..))))..)).
((.) ((. .)) .. (((.)))
....(((((.))))....)....

Design of xrRNA riboswitch

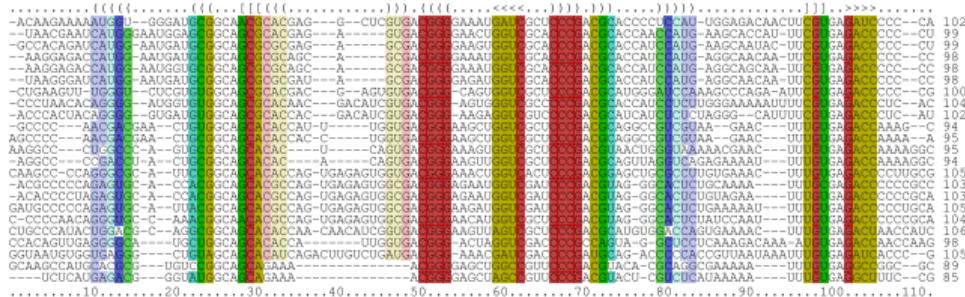


[Leonhard Sidl, MT Wolfinger, HT Yao...]

Design of SAM-I aptamer

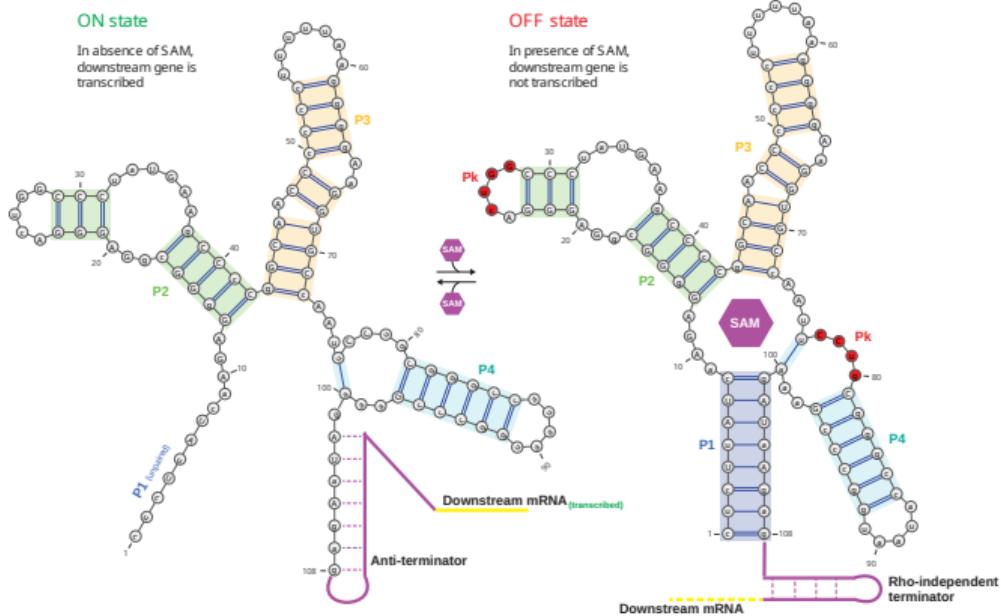


- Aim for similarity with MSA
- Learn generative model from MSA (RBM)
- Compatibility with target structure (with PKs)
- Avoid off-targets



[Jorge Fernandez-de-Cossio-Diaz, 2024]

Design of SAM-I riboswitch



[Jorge Fernandez-de-Cossio-Diaz, 2024]

Generation (Sampling):

- targets: compatibility, energy
- sequence similarity

Refinement (Stochastic optimization):

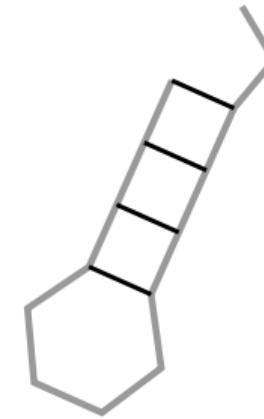
- avoid off-targets
- relative stability bound/unbound

RNA Design

GAUCUCACGGUCAA

RNA Design

Complementarity



((((....))))..

RNA structure design: positive and negative

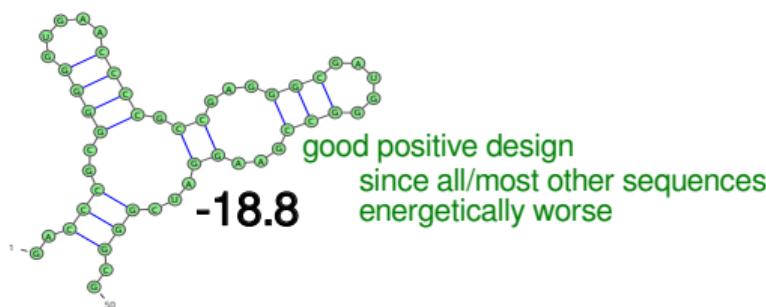
Positive design: Target a structure

→ optimize **affinity** to target structures t

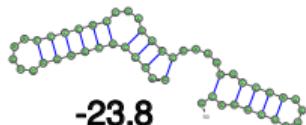
find sequence σ

with $E(\sigma, t) = \min_{\sigma'}(\sigma', t)$

extensions: multiple targets, properties, ...



but no negative design, since



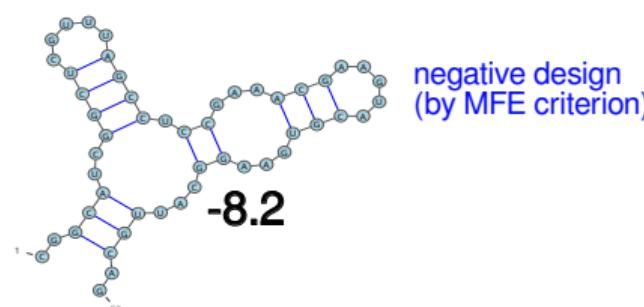
Negative design: Avoid all off-targets

→ **specificity** for targets

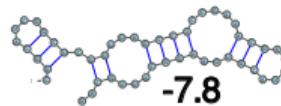
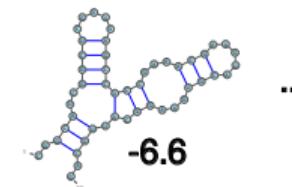
find design σ , s.t.

$E(\sigma, t) = \min_{t'} E(\sigma, t') =: MFE(\sigma)$

refined objectives: probability, ensemble, ...



since all other structures
energetically worse, e.g.



Hello world of positive design!

(single target structure, base pair energy)

IN: target structure t of length n

“base pair energy” $E(\sigma, t) = \sum_{(i,j) \in t} e_{bp}(\sigma_i, \sigma_j) + \sum_{i \text{ unpaired in } t} e_u(\sigma_i)$

Task: sample from the Boltzmann distribution of sequences; i.e. sample σ with probability

$$\Pr[\sigma] \sim \exp(-\beta E(\sigma, t)) \quad \text{for some inverse temperature } \beta$$

Hello world of positive design!

(single target structure, base pair energy)

IN: target structure t of length n

“base pair energy” $E(\sigma, t) = \sum_{(i,j) \in t} e_{bp}(\sigma_i, \sigma_j) + \sum_{i \text{ unpaired in } t} e_u(\sigma_i)$

Task: sample from the Boltzmann distribution of sequences; i.e. sample σ with probability

$$\Pr[\sigma] \sim \exp(-\beta E(\sigma, t)) \quad \text{for some inverse temperature } \beta$$

Observation: bases and base pairs can be generated *independently* of each other!

Algorithm

- 1) for each unpaired i : choose σ_i with $\Pr[\sigma_i] \sim \exp(-\beta e_u(\sigma_i))$
- 2) for each pair $(i,j) \in t$: choose σ_i and σ_j with $\Pr[\sigma_i, \sigma_j] \sim \exp(-\beta e_{bp}(\sigma_i, \sigma_j))$

Hello world of positive design!

(single target structure, base pair energy)

IN: target structure t of length n

“base pair energy” $E(\sigma, t) = \sum_{(i,j) \in t} e_{bp}(\sigma_i, \sigma_j) + \sum_{i \text{ unpaired in } t} e_u(\sigma_i)$

Task: sample from the Boltzmann distribution of sequences; i.e. sample σ with probability

$$\Pr[\sigma] \sim \exp(-\beta E(\sigma, t)) \quad \text{for some inverse temperature } \beta$$

Observation: bases and base pairs can be generated *independently* of each other!

Algorithm

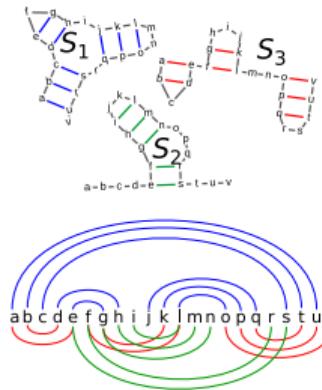
- 1) for each unpaired i : choose σ_i with $\Pr[\sigma_i] \sim \exp(-\beta e_u(\sigma_i))$
- 2) for each pair $(i,j) \in t$: choose σ_i and σ_j with $\Pr[\sigma_i, \sigma_j] \sim \exp(-\beta e_{bp}(\sigma_i, \sigma_j))$

What happens for complex energy models or multiple targets? (*dependencies!*)

Infrared

General efficient framework for weighted constraint solving.
⇒ Rapid development of bioinformatics tools (including design)

Input



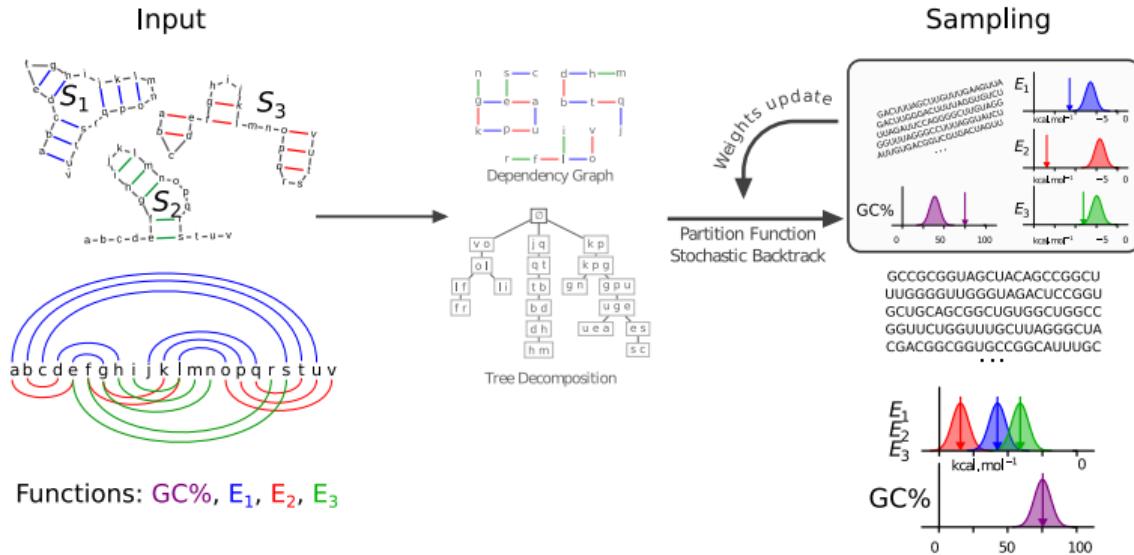
Functions: **GC%**, **E₁**, **E₂**, **E₃**

Infrared solves a weighted form of constraint problems (CSP → Feature Networks)
It allows us to describe (“model”) problems; then solves them automatically.

[Hua-Ting Yao et al., 2024]

Infrared

General efficient framework for weighted constraint solving.
⇒ Rapid development of bioinformatics tools (including design)

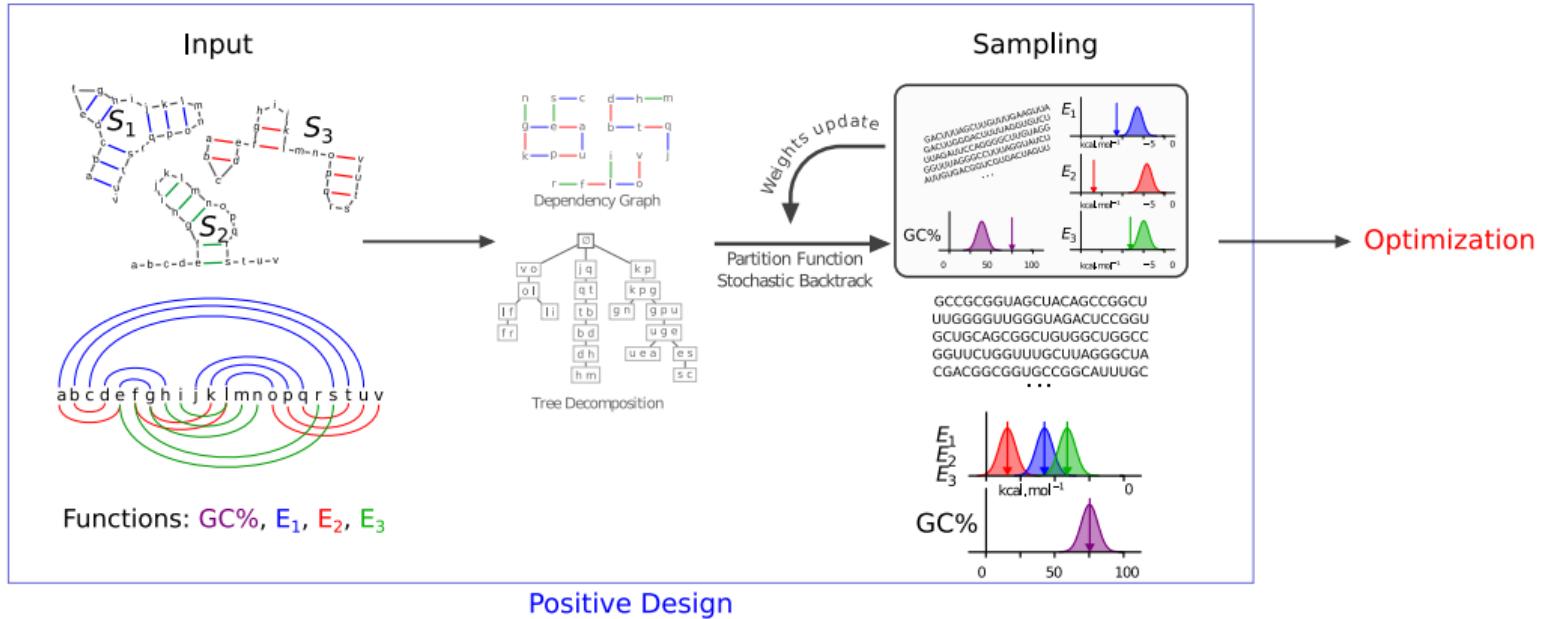


*Infrared solves a weighted form of constraint problems (CSP → Feature Networks)
It allows us to describe (“model”) problems; then solves them automatically.*

[Hua-Ting Yao et al., 2024]

Infrared

General efficient framework for weighted constraint solving.
⇒ Rapid development of bioinformatics tools (including design)



Infrared solves a weighted form of constraint problems (CSP → Feature Networks)
It allows us to describe (“model”) problems; then solves them automatically.

[Hua-Ting Yao et al., 2024]

Constraint Satisfaction Problems (CSPs)

Definition: A *CSP* is a tuple $(\mathcal{X}, \mathcal{D}, \mathcal{C})$, where

- $\mathcal{X} = \{X_1, \dots, X_n\}$ is a set of *variables*
- $\mathcal{D} = \{D_1, \dots, D_n\}$ is a set of corresponding finite *domains*
- \mathcal{C} is a finite set of *constraints*

Each *constraint* C is associated with k variables.

Solutions of a CSP are **assignments** of domain values to the variables that satisfy all constraints (**valid assignments**).

Constraint Satisfaction Problems (CSPs)

Definition: A *CSP* is a tuple $(\mathcal{X}, \mathcal{D}, \mathcal{C})$, where

- $\mathcal{X} = \{X_1, \dots, X_n\}$ is a set of *variables*
- $\mathcal{D} = \{D_1, \dots, D_n\}$ is a set of corresponding finite *domains*
- \mathcal{C} is a finite set of *constraints*

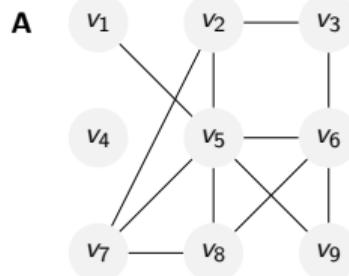
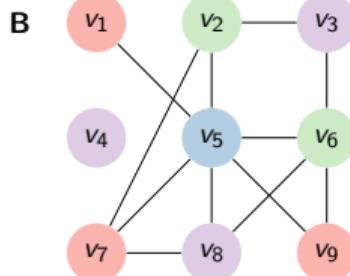
Each *constraint* C is associated with k variables.

Solutions of a CSP are **assignments** of domain values to the variables that satisfy all constraints (**valid assignments**).

General solving is NP-hard! Solving strategies?

- Generic, heuristic solving strategies: backtracking search + constraint propagation
- ... Infrared is specialized to problems with nearly tree-like dependencies
we gain: efficient (fpt) exact optimization + controlled sampling!

CSP Examples: Graph Coloring and N-Queens



Constraints: Adjacent nodes differ in color!

CSP Examples: Graph Coloring and N-Queens



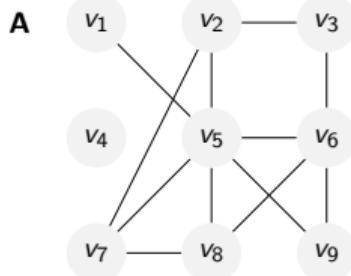
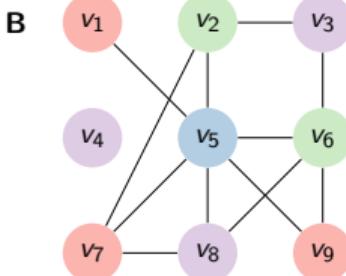
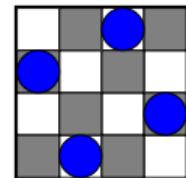
Constraints: Adjacent nodes differ in color!

$$CSP = (\mathcal{X}, \mathcal{D}, \mathcal{C})$$

- $\mathcal{X} = \{X_1, \dots, X_9\}$
- $\mathcal{D} = \{X_1 \mapsto [1..4], \dots, X_4 \mapsto [1..4]\}$
- $\mathcal{C} = \{X_i \neq X_j \mid i, j \text{ adjacent}\}$

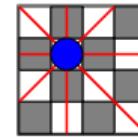
```
model = Model(9, (1, 4))
model.add_constraints(
    NotEquals(i, j) for i, j in edges)
```

CSP Examples: Graph Coloring and N-Queens



$$\begin{aligned}X_1 &= 3 \\X_2 &= 1 \\X_3 &= 4 \\X_4 &= 2\end{aligned}$$

Constraints: no attacks!



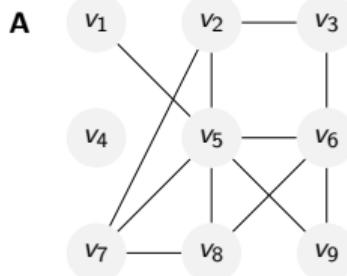
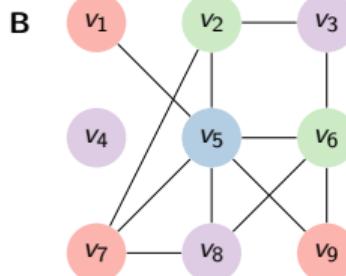
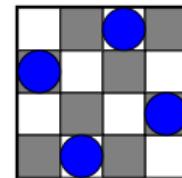
Constraints: Adjacent nodes differ in color!

$$CSP = (\mathcal{X}, \mathcal{D}, \mathcal{C})$$

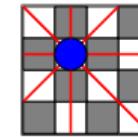
- $\mathcal{X} = \{X_1, \dots, X_9\}$
- $\mathcal{D} = \{X_1 \mapsto [1..4], \dots, X_4 \mapsto [1..4]\}$
- $\mathcal{C} = \{X_i \neq X_j \mid i, j \text{ adjacent}\}$

```
model = Model(9, (1, 4))
model.add_constraints(
    NotEquals(i, j) for i, j in edges)
```

CSP Examples: Graph Coloring and N-Queens



$$\begin{aligned}X_1 &= 3 \\X_2 &= 1 \\X_3 &= 4 \\X_4 &= 2\end{aligned}$$



Constraints: no attacks!

Constraints: Adjacent nodes differ in color!

$$CSP = (\mathcal{X}, \mathcal{D}, \mathcal{C})$$

- $\mathcal{X} = \{X_1, \dots, X_9\}$
- $\mathcal{D} = \{X_1 \mapsto [1..4], \dots, X_4 \mapsto [1..4]\}$
- $\mathcal{C} = \{X_i \neq X_j \mid i, j \text{ adjacent}\}$

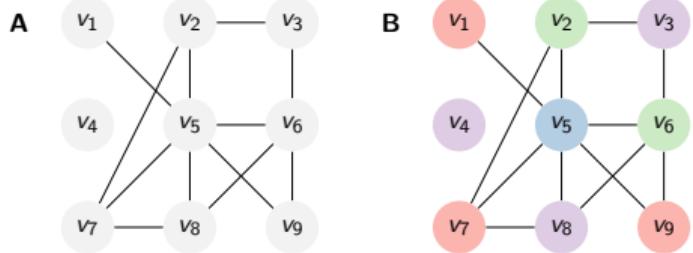
```
model = Model(9, (1, 4))
model.add_constraints(
    NotEquals(i, j) for i, j in edges)
```

$$CSP = (\mathcal{X}, \mathcal{D}, \mathcal{C})$$

- $\mathcal{X} = \{X_1, \dots, X_4\}$
- $\mathcal{D} = \{X_1 \mapsto [1..4], \dots, X_4 \mapsto [1..4]\}$
- $\mathcal{C} = \{X_i \neq X_j \mid 1 \leq i < j \leq 4\}$
 $\cup \{X_i + i \neq X_j + j \mid 1 \leq i < j \leq 4\}$
 $\cup \{X_i - i \neq X_j - j \mid 1 \leq i < j \leq 4\}$

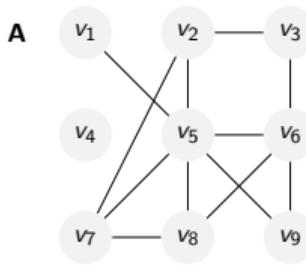
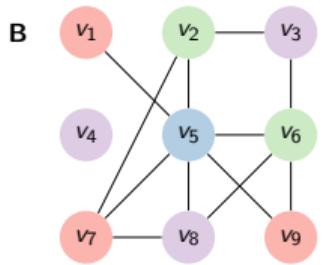
```
model = Model(4, (1, 4))
model.add_constraints(NotEquals(i, j)
    for i in range(4) for j in range(i+1, 4))
model.add_constraint( ...)
```

Dependency graph and tree decomposition

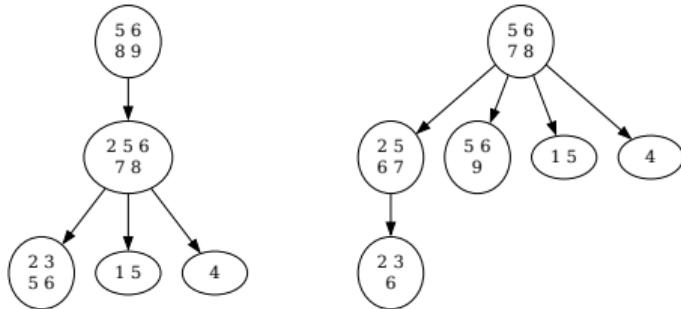


```
model = Model(9, (1,4))
edges = [(1,5), (2,3), (2,5), ...]
model.add_constraints(NotEquals(i,j)
    for i, j in edges)
```

Dependency graph and tree decomposition



```
model = Model(9, (1, 4))
edges = [(1,5), (2,3), (2,5), ...]
model.add_constraints(NotEquals(i,j)
    for i, j in edges)
```



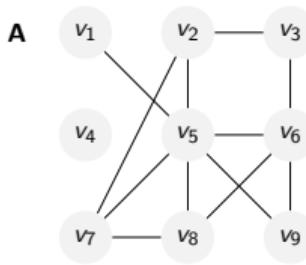
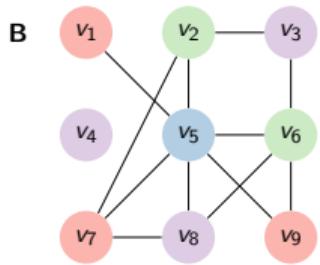
Tree decomposition (T, χ); $T = (V, E)$:

1. every variable occurs in one bag $v \in V$
2. for every constraint and function: there is one bag that contains its variables
3. for each variable: the bags containing it are connected

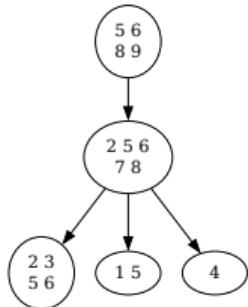
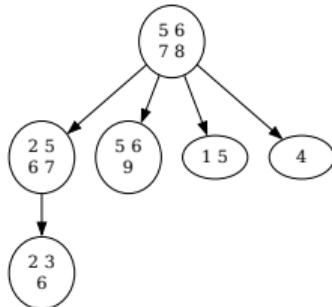
Tree width = size of largest bag - 1

Remarks:

Dependency graph and tree decomposition



```
model = Model(9, (1, 4))
edges = [(1,5), (2,3), (2,5), ...]
model.add_constraints(NotEquals(i,j)
    for i, j in edges)
```



Tree decomposition (T, χ) ; $T = (V, E)$:

1. every variable occurs in one bag $v \in V$
2. for every constraint and function: there is one bag that contains its variables
3. for each variable: the bags containing it are connected

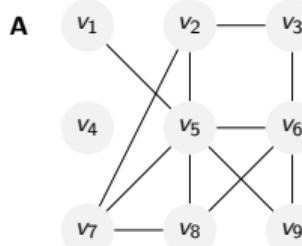
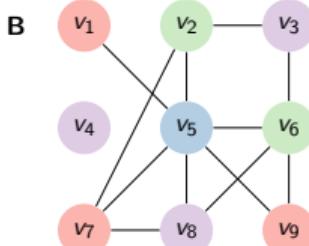
Tree width = size of largest bag - 1

Remarks:

- **Conditions 1–3** allow solving by dynamic programming (solve from smaller to larger subtrees)
- **Condition 2** \rightarrow every constraint and function can be processed in some bag

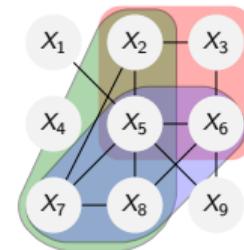
Adding functions → Objective function

Make it more interesting by adding some functions

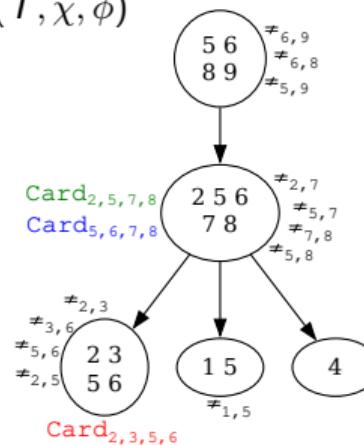


```
model = Model(9, (1, 4))
model.add_constraints(NotEquals(i, j)
    for i, j in edges)

# extend by card feature
model.add_functions([Card(i, j, k, l)
    for i, j, k, l in fourcycles], 'card')
```



Cluster tree (T, χ, ϕ)



Feature Networks

Feature networks add quality of solutions → **features**.

Definition

A *Feature Network* is a tuple $\mathcal{N} = (\mathcal{X}, \mathcal{D}, \mathcal{C}, \mathcal{F})$, where

- $\mathcal{X} = \{X_1, \dots, X_n\}$ is a set of *variables*
- $\mathcal{D} = \{D_1, \dots, D_n\}$ is a set of corresponding finite *domains*
- \mathcal{C} is a finite set of *constraints*
- \mathcal{F} is a finite set of *features*, which consist of *feature functions*

Features ...

- evaluate assignments as $F(x) = \sum_{f \in \mathcal{F}} f(x)$
- define the *evaluation function* $E_{\mathcal{N}}(x, \alpha) = \sum_{F \in \mathcal{F}} \alpha_F F(x)$ for weights α_F

Infrared solves the sampling problem

Problem (Assignment sampling)

INPUT: *Feature Network \mathcal{N} , feature weights α*

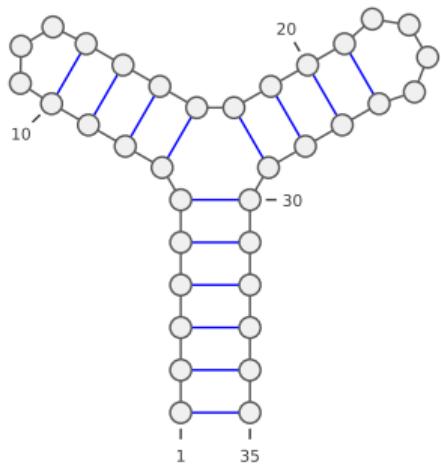
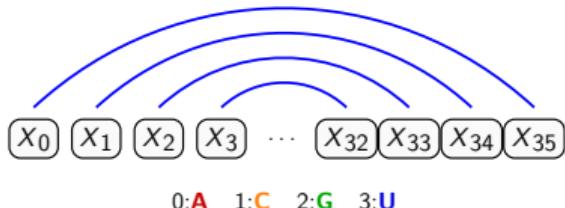
OUTPUT: *Valid assignment $x \in \mathcal{A}_{\mathcal{X}}$ generated with a probability that is proportional to its Boltzmann weight*

$$\mathbb{P}(x) \propto \exp(E_{\mathcal{N}}(x, \alpha)).$$

$\alpha = (\alpha_F)_{F \in \mathcal{F}}$ vector of weights

Evaluation function: $E_{\mathcal{N}}(x, \alpha) = \sum_{F \in \mathcal{F}} \alpha_F F(x).$

Modeling: Single structure design



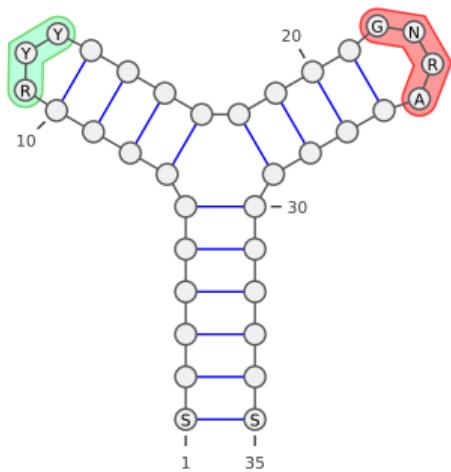
```
import infrared as ir
import infrared.rna as rna

model = ir.Model(35, 4) 0:A 1:C 2:G 3:U

target = "((((((((((...))))(((((....))))))))))" 
model.add_constraints(rna.BPComp(i, j) AU, CG, ...
    for (i, j) in rna.parse(target))
```

```
sampler = ir.Sampler(model)
samples = [sampler.sample() for _ in range(1000)]
```

Modeling: Single structure design



```
import infrared as ir
import infrared.rna as rna

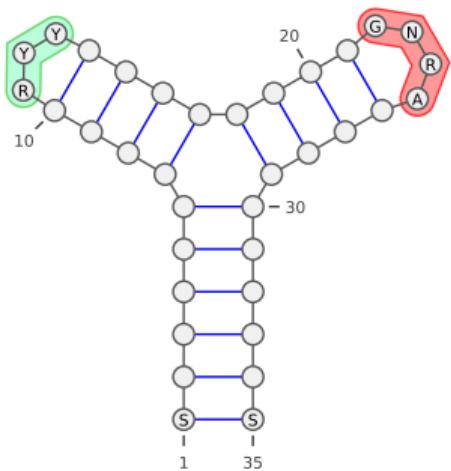
model = ir.Model(35, 4) 0:A 1:C 2:G 3:U

target = "((((((((((...))))(((((....))))))))))"
model.add_constraints(rna.BPComp(i, j) AU, CG, ...
    for (i, j) in rna.parse(target))

N:ACGU S:CG R:AG Y:CU
iupac_seq = "SNNNNNNNNNRYNNNNNNNNRANNNNNNNNNS"
for i, x in enumerate(iupac_seq):
    model.add_constraints(
        ir.ValueIn(i, rna.iupacvalues(x)))

sampler = ir.Sampler(model)
samples = [sampler.sample() for _ in range(1000)]
```

Modeling: Single structure design



```
import infrared as ir
import infrared.rna as rna

model = ir.Model(35, 4) 0:A 1:C 2:G 3:U

target = "((((((((((...))))(((((....))))))))))" AU, CG, ...
model.add_constraints(rna.BPComp(i, j)
for (i, j) in rna.parse(target))

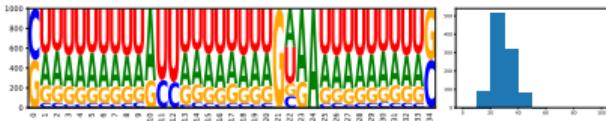
N : ACGU S : CG R : AG Y : CU
iupac_seq = "SNNNNNNNNNRYNNNNNNNNRANNNNNNNNNS"
for i, x in enumerate(iupac_seq):
    model.add_constraints(
        ir.ValueIn(i, rna.iupacvalues(x) ))
```



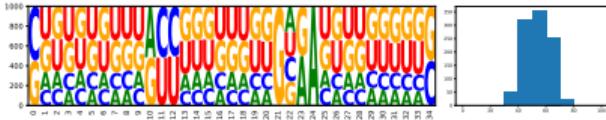
```
sampler = ir.Sampler(model)
samples = [sampler.sample() for _ in range(1000)]
```

Control GC-content

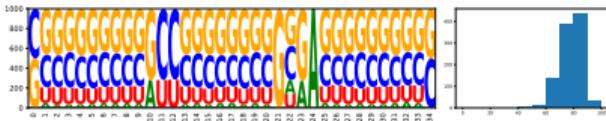
$$\alpha = -1$$



$$\alpha = 0$$



$$\alpha = +1$$



Method 1:

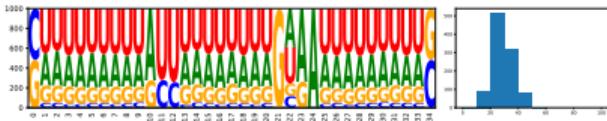
```
model.add_functions([rna.GCCont(i))  
    for i in range(n)], 'gc')  
model.set_feature_weight( $\alpha$ , 'gc')
```

CG : 1 AU : 0

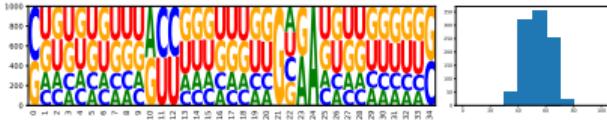
```
sampler = ir.Sampler(model)  
samples = [sampler.sample() for _ in range(1000)]
```

Control GC-content

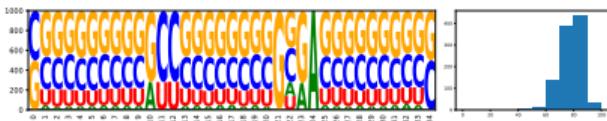
$\alpha = -1$



$\alpha = 0$



$\alpha = +1$



Method 1:

```
model.add_functions([rna.GCCont(i)]  
    for i in range(n)], 'gc')  
model.set_feature_weight( $\alpha$ , 'gc')  
  
sampler = ir.Sampler(model)  
samples = [sampler.sample() for _ in range(1000)]
```

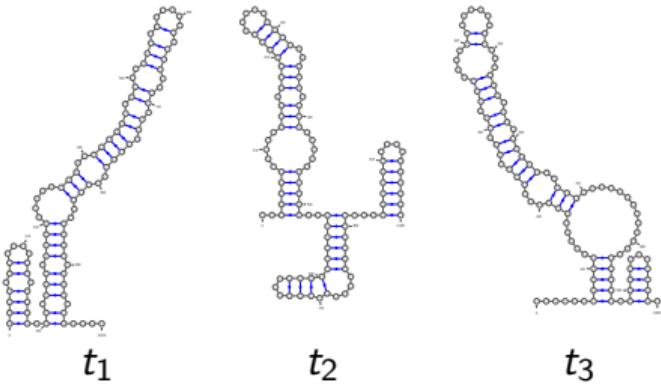
CG : 1 AU : 0

Method 2 (Targeted sampling):

```
sampler = ir.Sampler(model)  
sampler.set_target(0.75 * n, 0.01 * n, 'gc')  
samples = [sampler.targeted_sample()  
    for _ in range(1000)]
```

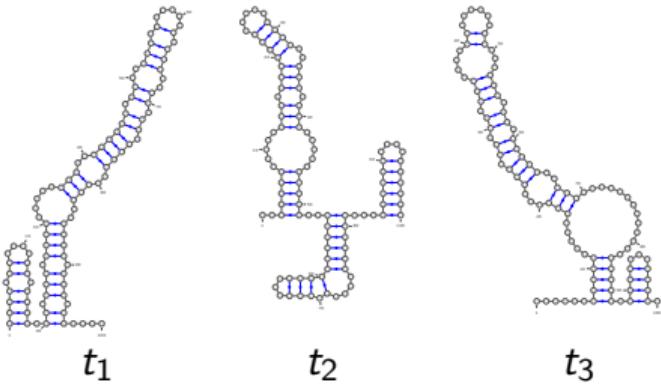
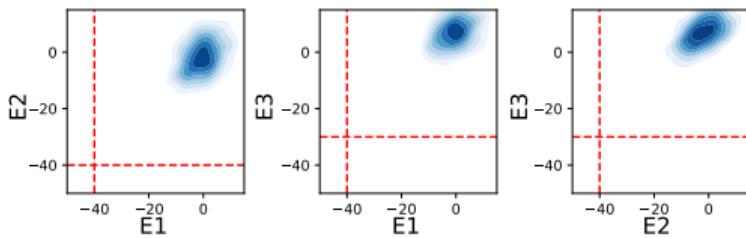
Automatically learn α

Multitarget design



```
model = ir.Model(n, 4)
for k, target in enumerate(targets):
    bps = rna.parse(target)
    model.add_constraints(rna.BPComp(i, j)
        for (i, j) in bps)
```

Multidimensional Boltzmann sampling



uniform

```
model = ir.Model(n, 4)

for k, target in enumerate(targets):
    bps = rna.parse(target)
    model.add_constraints(rna.BPComp(i, j)
        for (i, j) in bps)

    Simplified energy model

model.add_functions([rna.BPEnergy(i, j)
    for (i, j) in bps], f'energy{k}')

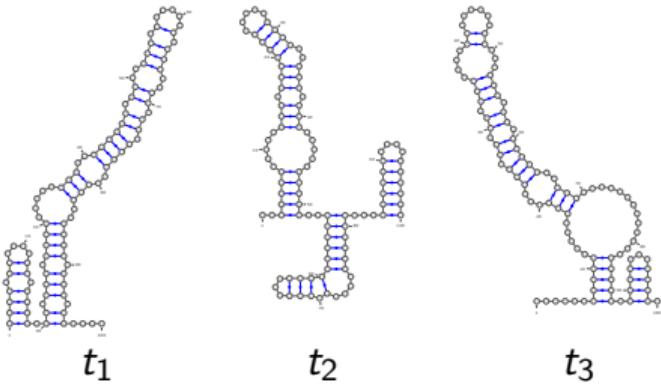
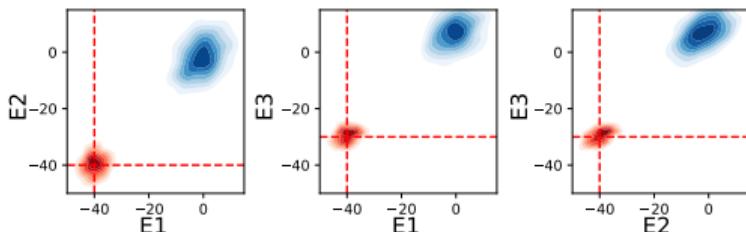

for k, target in enumerate(targets):
    model.add_feature(f'E{k+1}', f'energy{k}',

        lambda sample, target=target:
            energy_of_struct(sample, target))

ViennaRNA energy model

sampler = ir.Sampler(model)
```

Multidimensional Boltzmann sampling



uniform targeted

```
model = ir.Model(n, 4)

for k, target in enumerate(targets):
    bps = rna.parse(target)
    model.add_constraints(rna.BPComp(i, j)
        for (i, j) in bps)

    Simplified energy model

model.add_functions([rna.BPEnergy(i, j)
    for (i, j) in bps], f'energy{k}')

for k, target in enumerate(targets):
    model.add_feature(f'E{k+1}', f'energy{k}',

        lambda sample, target=target:
            energy_of_struct(sample, target))

ViennaRNA energy model

sampler = ir.Sampler(model)
sampler.set_target( -40, 0.5, 'E1')
sampler.set_target( -40, 0.5, 'E2')
sampler.set_target( -30, 0.5, 'E3')
```

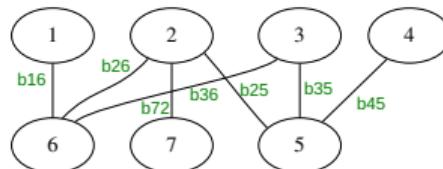
Fixed-parameter tractable sampling in Infrared

Recipe:

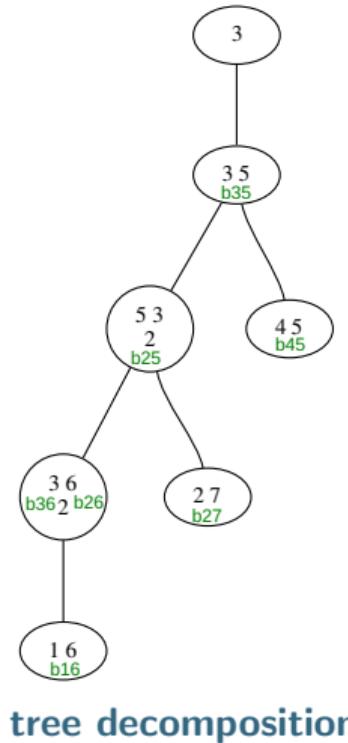
1. **Tree-Decompose** dependency graph
2. Apply **dynamic programming** ↑ (partition functions)
3. **Sample** ↓ (stochastic traceback)

1 2 3 4 5 6 7
((. .)) .
. ((()))
. ((.)) .

target structures



dependency graph



tree decomposition

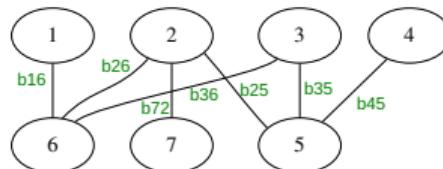
Fixed-parameter tractable sampling in Infrared

Recipe:

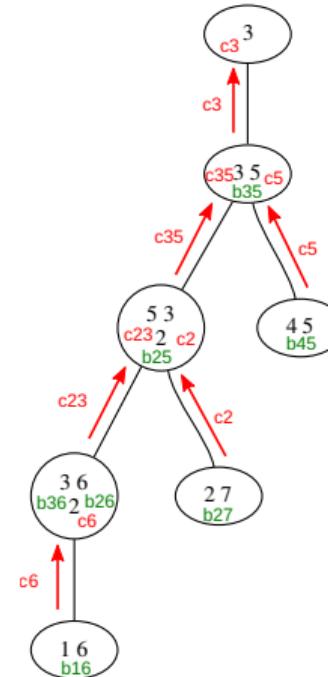
1. **Tree-Decompose** dependency graph
2. Apply **dynamic programming** \uparrow (partition functions)
3. **Sample** \downarrow (stochastic traceback)

1 2 3 4 5 6 7
((. .)) .
. ((()))
. ((.)) .

target structures



dependency graph



tree decomposition

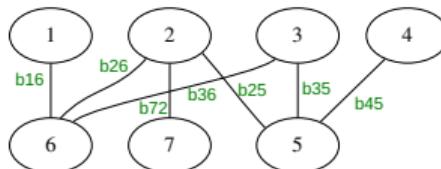
Fixed-parameter tractable sampling in Infrared

Recipe:

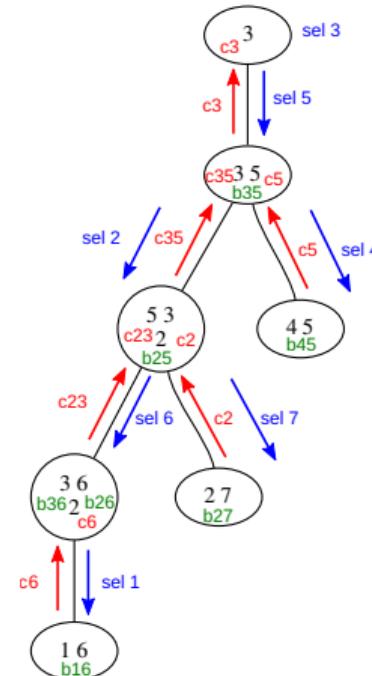
1. **Tree-Decompose** dependency graph
2. Apply **dynamic programming** \uparrow (partition functions)
3. **Sample** \downarrow (stochastic traceback)

1 2 3 4 5 6 7
((. .)) .
. ((()))
. ((.)) .

target structures



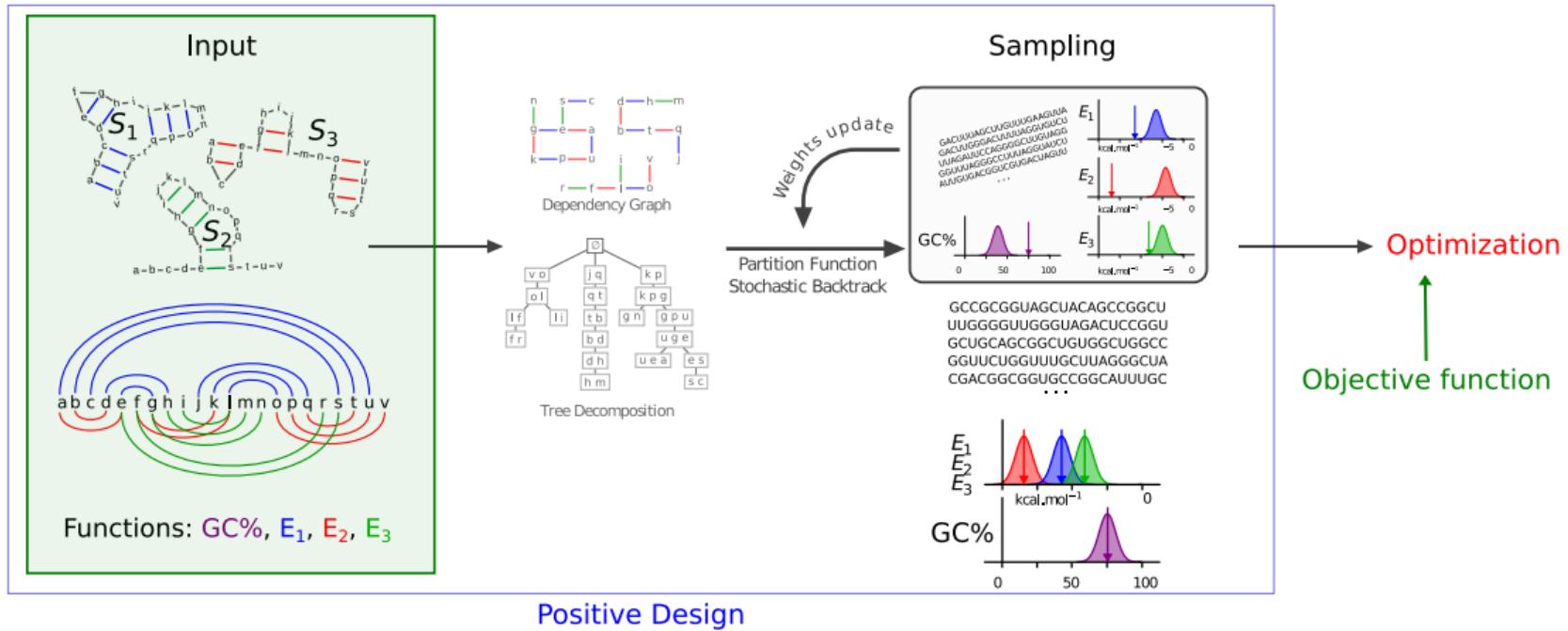
dependency graph



tree decomposition

Theorem: Design sampling is efficient for fixed tree width w : $\mathcal{O}(n k 4^{w+1} + t n k)$

Look back at positive design by Infrared



RNA structure design: positive and negative

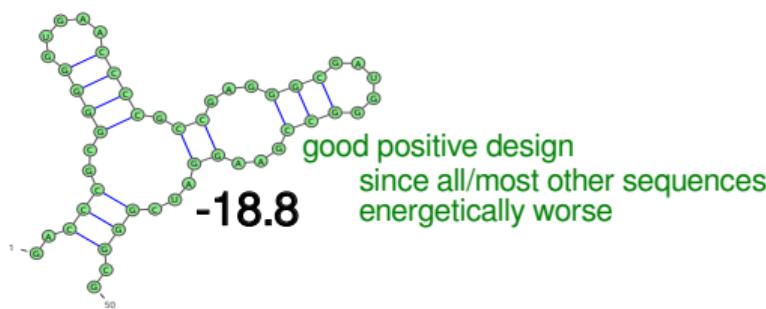
Positive design: Target a structure

→ optimize **affinity** to target structures t

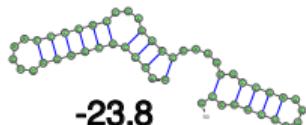
find sequence σ

with $E(\sigma, t) = \min_{\sigma'}(\sigma', t)$

extensions: multiple targets, properties, ...



but no negative design, since



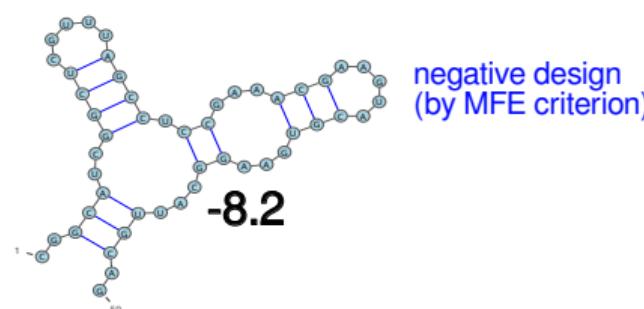
Negative design: Avoid all off-targets

→ **specificity** for targets

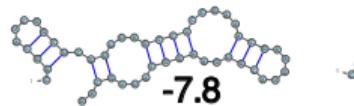
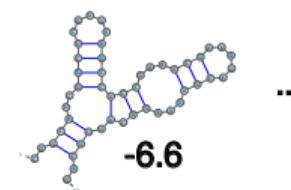
find design σ , s.t.

$E(\sigma, t) = \min_{t'} E(\sigma, t') =: MFE(\sigma)$

refined objectives: probability, ensemble, ...



since all other structures
energetically worse, e.g.



Avoiding off-targets: negative design as optimization

minimize objective function over all sequences σ w.r.t. a target structure t

- *MFE defect*: base pair distance of MFE structure of σ and t ,

$$D_{MFE}(\sigma) = d(MFE(\sigma), t)$$

where *base pair distance* $d(s, t) := \sum_{(i,j) \notin s, (i,j) \in t} 1 + \sum_{(i,j) \in s, (i,j) \notin t} 1$

Ex.: $d_{bp} \left(\begin{array}{c} (((\dots).).), \\ ((.(\dots))). \end{array} \right) = 2$

Avoiding off-targets: negative design as optimization

minimize objective function over all sequences σ w.r.t. a target structure t

- *MFE defect*: base pair distance of MFE structure of σ and t ,

$$D_{MFE}(\sigma) = d(MFE(\sigma), t)$$

where *base pair distance* $d(s, t) := \sum_{(i,j) \notin s, (i,j) \in t} 1 + \sum_{(i,j) \in s, (i,j) \notin t} 1$

Ex.: $d_{bp} \left(\begin{array}{c} (((\dots).).), \\ ((.(\dots))). \end{array} \right) = 2$

- *probability defect*: $D_{Pr}(\sigma) = 1 - \Pr[t \mid \sigma]$
maximize probability of the target t in the ensemble of σ

Avoiding off-targets: negative design as optimization

minimize objective function over all sequences σ w.r.t. a target structure t

- *MFE defect*: base pair distance of MFE structure of σ and t ,

$$D_{MFE}(\sigma) = d(MFE(\sigma), t)$$

where *base pair distance* $d(s, t) := \sum_{(i,j) \notin s, (i,j) \in t} 1 + \sum_{(i,j) \in s, (i,j) \notin t} 1$

Ex.: $d_{bp} \left(\begin{array}{c} (((\dots).).), \\ ((.(\dots))). \end{array} \right) = 2$

- *probability defect*: $D_{Pr}(\sigma) = 1 - \Pr[t \mid \sigma]$
maximize probability of the target t in the ensemble of σ

this does not consider whether the probable structures are close to target

Avoiding off-targets: negative design as optimization

minimize objective function over all sequences σ w.r.t. a target structure t

- *MFE defect*: base pair distance of MFE structure of σ and t ,

$$D_{MFE}(\sigma) = d(MFE(\sigma), t)$$

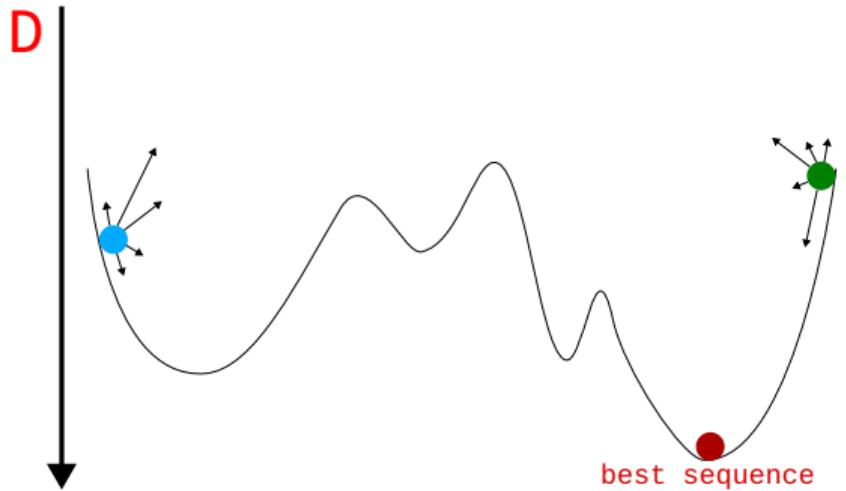
where *base pair distance* $d(s, t) := \sum_{(i,j) \notin s, (i,j) \in t} 1 + \sum_{(i,j) \in s, (i,j) \notin t} 1$

$$\text{Ex.: } d_{bp} \left(\begin{array}{c} (((\dots).).), \\ ((.(\dots))). \end{array} \right) = 2$$

- *probability defect*: $D_{Pr}(\sigma) = 1 - \Pr[t \mid \sigma]$
maximize probability of the target t in the ensemble of σ
- *ensemble defect*: expected distance of ensemble structures s of σ to the target t

$$D_{ens}(\sigma) = \sum \Pr[s \mid \sigma] d(s, t) = \sum_{1 \leq i < j \leq n, (i,j) \in t} 1 - p_{ij} + \sum_{1 \leq i < j \leq n, (i,j) \notin t} p_{ij}$$

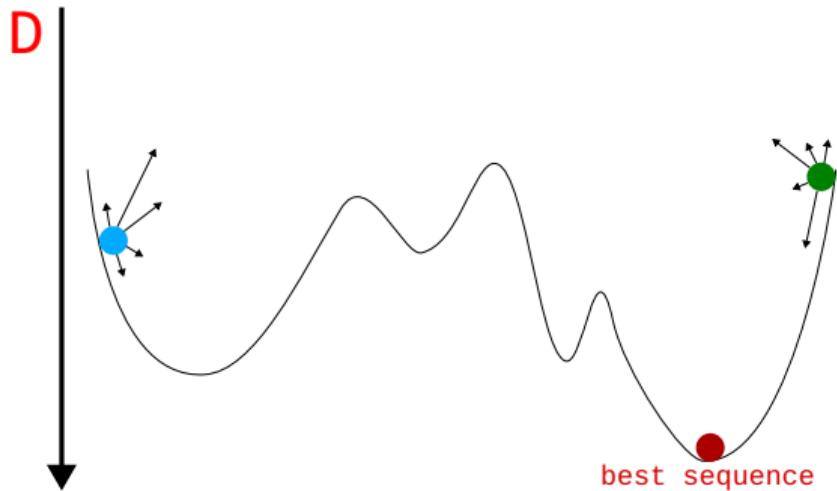
Algorithms for negative design: Stochastic Optimization



rugged landscape, local optima

random starts; neighbors, mutations

Algorithms for negative design: Stochastic Optimization



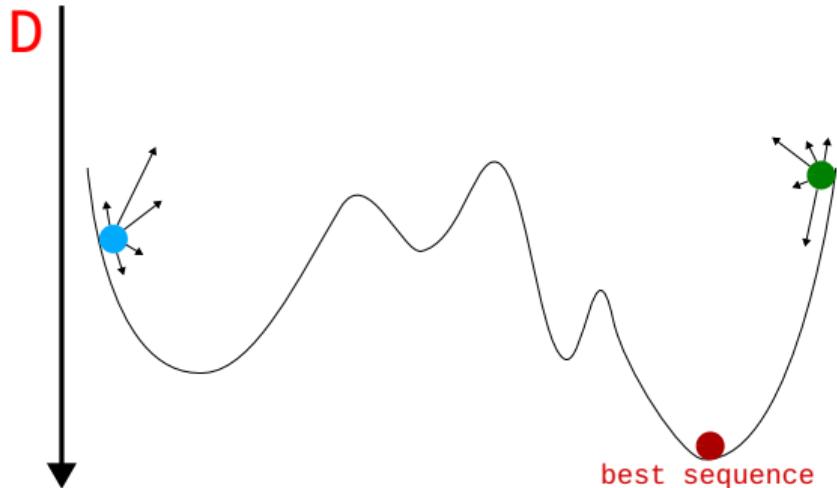
Hill Climbing

```
for i in range(steps):  
    x = random_mutate(seq)  
    if D(x) < D(seq):  
        seq = x  
return seq
```


rugged landscape, local optima

random starts; neighbors, mutations

Algorithms for negative design: Stochastic Optimization



rugged landscape, local optima

random starts; neighbors, mutations

Hill Climbing

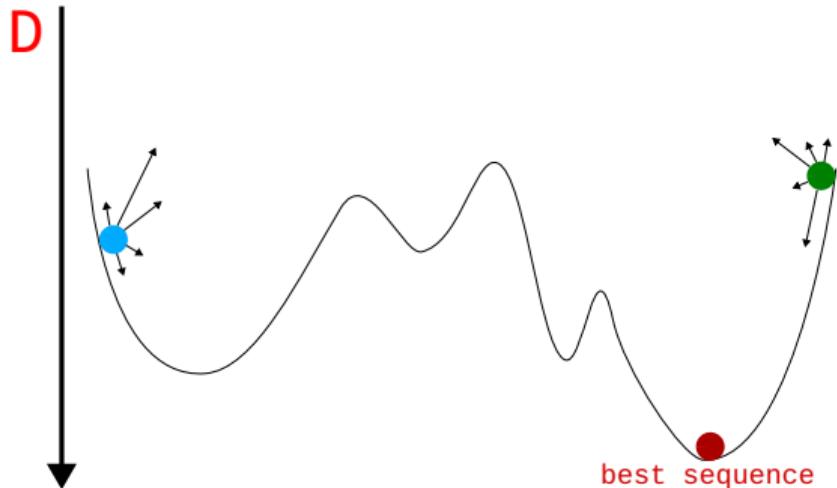
```
for i in range(steps):  
    x = random_mutate(seq)  
    if D(x) < D(seq):  
        seq = x  
return seq
```

Metropolis-Hastings MC Algorithm

```
best = seq  
for i in range(steps):  
    x = random_mutate(seq)  
    if D(x) < D(seq) or  
        random() <= exp( (D(x) - D(seq)) / T )  
        seq = x  
    if D(seq) < D(best): best = seq  
return best
```

Control acceptance of worse neighbors by T
(MCMC, Boltzmann distribution)

Algorithms for negative design: Stochastic Optimization



rugged landscape, local optima

random starts; neighbors, mutations

Hill Climbing

```
for i in range(steps):  
    x = random_mutate(seq)  
    if D(x) < D(seq):  
        seq = x  
return seq
```

Metropolis-Hastings MC Algorithm

```
best = seq  
for i in range(steps):  
    x = random_mutate(seq)  
    if D(x) < D(seq) or  
        random() <= exp( (D(x) - D(seq)) / T)  
        seq = x  
    if D(seq) < D(best): best = seq  
return best
```

SA, Replica exchange, Genetic algos, ...

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect

[Ivo Hofacker et al., 1994]

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect
- Try **random start sequences** and optimize by **Hill climbing**

needs many evaluations of objective

expensive?

[Ivo Hofacker et al., 1994]

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect
- Try **random start sequences** and optimize by **Hill climbing**

needs many evaluations of objective

expensive?

- for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

[Ivo Hofacker et al., 1994]

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect
- Try **random start sequences** and optimize by **Hill climbing**

needs many evaluations of objective

expensive?

- for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

(((((((((((...))))(((((....)))))))))))

??

[Ivo Hofacker et al., 1994]

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect
- Try **random start sequences** and optimize by **Hill climbing**

needs many evaluations of objective

expensive?

- for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

(((((. . .))) ((. . .))))))

??????CGGCAAAGCCG???????????????????

[Ivo Hofacker et al., 1994]

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect
- Try **random start sequences** and optimize by **Hill climbing**

needs many evaluations of objective

expensive?

- for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

(((((((((((...)))) ((((....))))))))))

??????CGGCAAAGCCGGGCCAUUUGGCC??????

[Ivo Hofacker et al., 1994]

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect
- Try **random start sequences** and optimize by **Hill climbing**

needs many evaluations of objective

expensive?

- for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

(((((.)))) ((.)))

??????CGGCAAAGCCGGGCCUUUUUGGCC??????

[Ivo Hofacker et al., 1994]

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect
- Try **random start sequences** and optimize by **Hill climbing**

needs many evaluations of objective

expensive?

- for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

(((((. . .))) ((. . .))) . . .))

??????CGGCAAAGCCGGGCCAAAUGGCC??????

[Ivo Hofacker et al., 1994]

RNAinverse - Classical RNA design

The *single sequence design* tool of the Vienna RNA package

- Optimizes MFE defect or probability defect
- Try **random start sequences** and optimize by **Hill climbing**

needs many evaluations of objective

expensive?

- for MFE design, RNA-tailored strategy:
start at small substrutures, proceed to larger ones
avoid getting stuck; reduce folding of long sequences

For global optima, subsequence designs must be optimal!

converse??

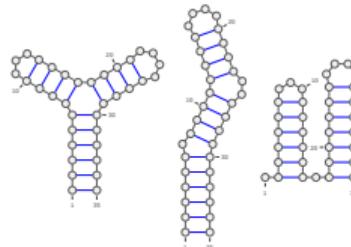
why does this still work well?

RNAinverse still remarkably competitive (using good starting sequences) [Boury et al., 2024]

[Ivo Hofacker et al., 1994]

Beyond single targets: objectives for multi-target design

1 2 3
01234567890123456789012345678901234
 $t_1 = (((((((((\ldots))))(((((\ldots))))))))))$
 $t_2 = (((((.((((((\ldots))))\ldots))))))))$
 $t_3 = .((((((\ldots))))).((((((\ldots)))))))$



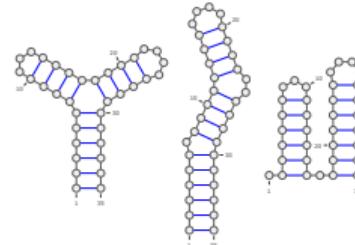
- “Multi-defect” for targets t_1, \dots, t_m [Hammer et al., “RNA Blueprint” 2017]

$$D_{multi}(\sigma) = \begin{cases} \frac{1}{m} \sum_{1 \leq \ell \leq m} E(\sigma, t_\ell) - G(\sigma) & \text{(dominate ensemble)} \\ + \xi \frac{1}{2^{\binom{m}{2}}} \sum_{1 \leq k < \ell \leq m} |E(\sigma, t_k) - E(\sigma, t_\ell)| & \text{(similar energies)} \end{cases}$$

$$G(\sigma) = -RT \ln Z(\sigma) \text{ “ensemble energy”}$$

Beyond single targets: objectives for multi-target design

1 2 3
01234567890123456789012345678901234
 $t_1 = (((((((((\ldots))))(((((\ldots))))))))))$
 $t_2 = (((((.((((((\ldots))))\ldots))))))))$
 $t_3 = .((((((\ldots))))).((((((\ldots)))))))$



- “Multi-defect” for targets t_1, \dots, t_m [Hammer et al., “RNA Blueprint” 2017]

$$D_{multi}(\sigma) = \begin{cases} \frac{1}{m} \sum_{1 \leq \ell \leq m} E(\sigma, t_\ell) - G(\sigma) & \text{(dominate ensemble)} \\ + \xi \frac{1}{2^{\binom{m}{2}}} \sum_{1 \leq k < \ell \leq m} |E(\sigma, t_k) - E(\sigma, t_\ell)| & \text{(similar energies)} \end{cases}$$

- Aim for ensemble dominance with certain energy differences of targets..., e.g.

$$D_{ex}(\sigma) = |E(\sigma, t_1) - G(\sigma)| + |E(\sigma, t_2) - E(\sigma, t_1) - 3| + |E(\sigma, t_3) - E(\sigma, t_1) - 4|$$

$$G(\sigma) = -RT \ln Z(\sigma) \text{ “ensemble energy”}$$

Stochastic optimization in Infrared

How to find valid neighbors in complex design problems?

1 2 3

01234567890123456789012345678901234

(((((((. . .))))((((. . .))))))))

(((((((.(((((.((.))))))))))))))))

$\therefore ((((((\ldots))))) : ((((((\ldots))))))$

GCGUGCGGGGGAGUCUCUCCGUCAAUGGGGCACGC

Stochastic optimization in Infrared

How to find valid neighbors in complex design problems?

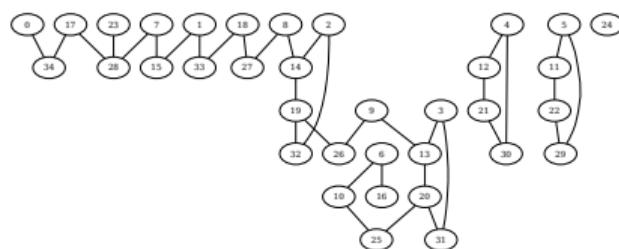
1 2 3

01234567890123456789012345678901234

(((((((. . .))))((((. . .))))))))

$\cdot (((((((\dots)))))) \cdot ((((((((\dots)))))))$

GGGUGGGGGAGUCUCUCCGUCAAUGGGGCACGC



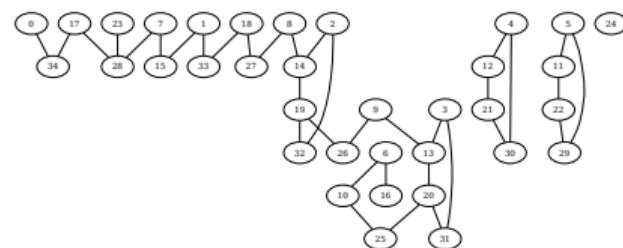
- resample connected components (of dependency graph)

Idea: independence of cc preserves all other constraints

Stochastic optimization in Infrared

How to find valid neighbors in complex design problems?

1 2 3
01234567890123456789012345678901234
((((((((((...))))(((((...)))))))))))
((((((.((((((...))))...)))))))))))
.((((((...))))).((((((...)))))))
GCGUGCGGGGGAGUCUCUCCGUAAUGGGGCACGC



- **resample connected components** (of dependency graph)

Idea: independence of cc preserves all other constraints

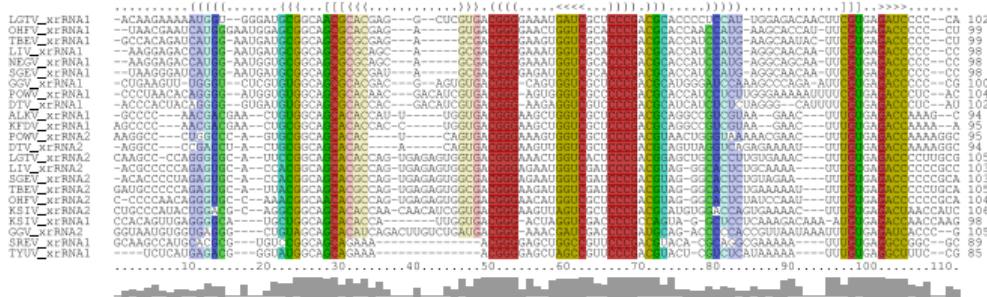
- **sample neighbors** in a targeted distance

Idea:

- extend model by distance function
- sample neighbors, controlled by distance to current sequence

Learning design from evolution (Generative Models)

General idea: learn from homology information / MSAs

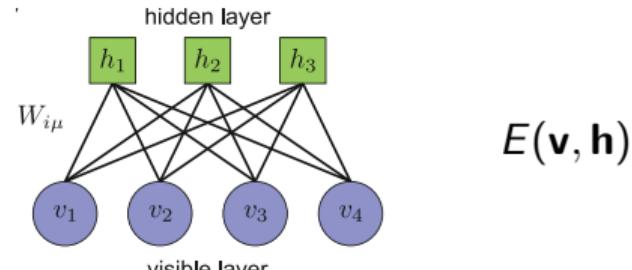


There is information in MSA beyond position-wise frequencies! \Rightarrow covariation...

\Rightarrow Restricted Boltzmann Machines (RBM)

- (bipartite) two layer neural networks
- can be trained to evaluate sequences
- shown to design SAM aptamer

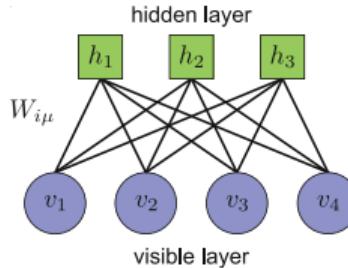
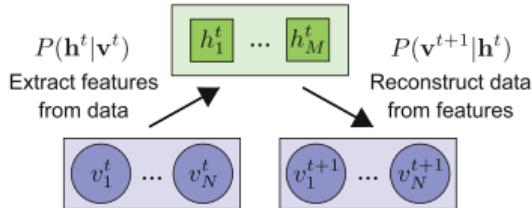
[FdCD et al., 2023]



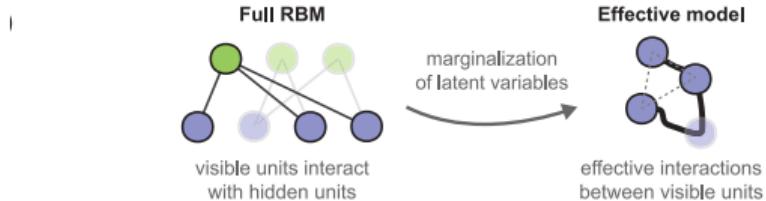
[Jorge Fernandez-de-Cossio-Diaz, 2024]

Restricted Boltzmann Machines (RBMs)

v_μ : A, C, G, U, –
 h_i : dependencies



PCD, Gibbs sampler

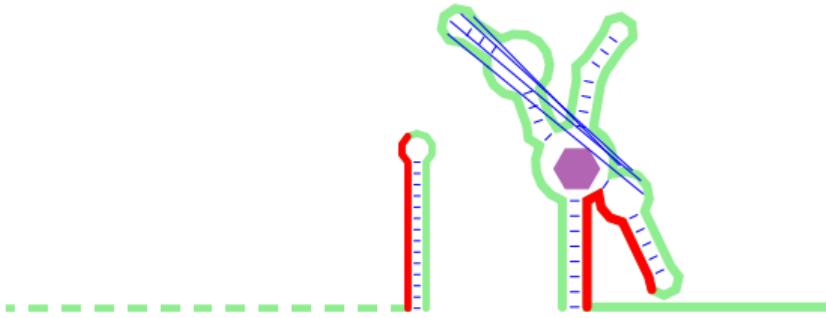
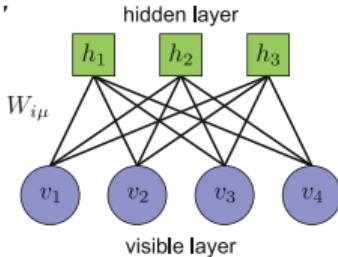


$E_{\text{eff}}(\mathbf{v}) \leftarrow \text{marginalization}$

$$E(\mathbf{v}, \mathbf{h}) = \sum_{i=1}^N \mathcal{V}_i(v_i) + \sum_{\mu=1}^M \mathcal{U}_\mu(h_\mu) - \sum_{i=1}^N \sum_{\mu=1}^M w_{i\mu}(v_i)h_\mu$$

- Effective training: maximize log likelihood of training data by *persistent contrastive divergence (PDC)* [Hinton, 2012]
- Evaluation of designs
- Positive design / sampling

Hands on session



- Use of Infrared
 - Design of SAM-I aptamer
 - Design of SAM-I on-switch (simplified)

- Sample and optimize
 - Integrate homology and thermodynamic info
 - Integrate evaluation by RBM