RNA and drug design

Antoine Taly
Laboratoire de Biochimie Théorique,
Institut de Biologie Physico Chimique

@ s Mo W SEEE

||||||||||||||||||
uuuuuuuuuuuuuuu

PSL %

UNIVERSITE PARIS




Outline

® RNA as a drug target

® Drug design pipeline and ML/AI impact
@® Molecular aspects

® RNA again



RNA and drug design



RNA as a drug
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terminus of oligonucleotide RGLS4326
drives off-target AMPAR inhibition and
CNS toxicity. Nat Commun 16, 10762
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RNA as a biomarker
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Mechanisms underlying the dysregulation of RNA m6A
modification and m6A-dependent processes in cancer.
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RNA therapeutics today

Discoveries on RNA biology ——

Developments in RNA therapy ——
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O messenger RNA (mRNA)
O small interfering RNA (SIRNA/miRNA)
Q antisense oligonuclectides (ASOs)

Classes of RNA therapeutics

O RNA-targeting small molecules

2025 Small Molecule
RNA-targeting small molecules FOA-Approvals

® classical drugs interacting with
structured RNA

® antibiotics, splice modulators,
viral polymerase inhibitors

® includes nucleoside analogues
used in antiviral therapy

11
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Drug design pipeline



Traditional pipeline
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in drug discovery: A paradigm shift in pharmaceutical innovation. International Journal of Pharmaceutics, 125789.



Advertised potential impact of ML/AI
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Where does the cost come from ?

Table 3. Nonclinical, Clinical, FDA Review, and Postapproval Costs as Percentage of Mean, Mean Expected,
and Mean Expected Capitalized Total Cost®

Percentage of total cost (95% Cl)

Therapeutic area and type of cost Nonclinical Clinical FDA review Phase 4

All therapeutic areas

Cost 6.8(3.7-9.1) 68.0(45.8-73.3) 1.5(1.3-2.0) 23.7 (17.7-47.7)
Expected cost 27.0(22.1-28.1) 60.5(49.5-63.1) 4.6(2.8-8.0) 7.9(5.1-21.3)
Expected capitalized cost 40.2 (35.2-44.6) 53.0(48.4-56.9) 2.9(1.4-5.4) 4.0(2.4-13.1)

Sertkaya A, Beleche T, Jessup A, Sommers BD. Costs of Drug Development and Research and Development Intensity in
the US, 2000-2018. JAMA Netw Open. 2024;7(6):e2415445.



Where does the cost come from?

a 100 - € 15+
Ll
£ =
5 =
@
g 2
wy
. 5
& 10 - = 10
9 B
2 2
S A: By 2018, 0.7 =]
= more NMEs per =
B billion US$ E
o R&D spendin
L pending .5'
YU 10- g 0.5
=
£ b
- < 60%
3 S
= =
2 <
0.1 T ; L - 2 i L
1940 1960 1980 2000 2020 1990 2004 2013
b 10 -l B Cost of molecule B Cost of failure




Al/ML in clinical trials risk management
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How Al Is used?
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Jayatunga, M. K., Ayers, M., Bruens, L., Jayanth, D., & Meier, C. (2024). How successful are Al-discovered drugs in clinical trials? A first analysis and
emerging lessons. Drug discovery today, 29(6), 104009.



test phase of Al-discovered drugs
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measure of the impact
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2025 update...

Overall, Al-designed molecules appear to have higher phase I success rates (~80%-90% vs
~52% industry average), likely reflecting better upfront filtering, but phase Il outcomes
(~30%-40% success) remain similar to traditional benchmarks.**° These outcomes
suggest that Al is indeed accelerating early-stage discovery and improving efficiency, but
it has not yet overcome the fundamental biological hurdles of later-stage development.
The mixed record highlights both progress and remaining challenges, underscoring the
importance of rigorous validation.

Dharmasivam, M., Kaya, B., Akinware, A., Azad, M. G., & Richardson, D. R. (2025). Leading Al-driven drug discovery platforms: 2025 landscape and
global outlook. Pharmacological Reviews, 100102.



Looking at the molecular scale



Bioactivity Omics data Structural data
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Catacutan, D.B., Alexander, J., Arnold, A. et al. Machine learning in preclinical drug discovery. Nat Chem Biol 20, 960-
973 (2024).




ML Message-passing VAE NF Transformers Diffusion generative
algorithms neural network model

Catacutan, D.B., Alexander, J., Arnold, A. et al. Machine learning in preclinical drug discovery. Nat Chem Biol 20, 960-
973 (2024).
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Hit identification
Molecular generation + bioactivity prediction
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Target structure prediction + docking

Translational investigation
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Catacutan, D.B., Alexander, J., Arnold, A. et al. Machine learning in preclinical drug discovery. Nat Chem Biol 20, 960-

973 (2024).




RNA Is not protein
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Getting help from experiments?

(A) RNA secondary structure determination
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Strategies that can be used

(A) rRNA-targeted translation interrupters
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ML for screening of RNA-targeting molecules
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Various structural motifs can be targeted
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Interaction patterns
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ADMET considerations
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ADMET considerations
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